Hybrid Support Vector Machine / Hidden Markov Model approach for continuous
speech recognition

Shantanu Chakrabartty, Guneet Singh and Gert Cauwenberghs
shantanu@bach.ece.jhu.edu,gsingh@ece.jhu.edu,gert@bach.ece.jhu.edu
Center for Language and Speech Processing(CLSP) and
Department of Electrical and Computer Engineering
The Johns Hopkins University
Baltimore, MD 21218 USA

Abstract— A hybrid Support Vector Machine (SVM) and
Hidden Markov Model (HMM) approach is proposed for design-
ing continuous speech recognition systems. Using novel proper-
ties of SVMs and combining them with HMMs one can obtain
models that map easily to hardware and leads to more modu-
lar and scalable design. The overall architecture of the proposed
system is based on the MAP (maximum a posteriori) framework
which offers a direct, feed-forward recognition model. The SVMs
generate smooth estimates of local transition probabilities in the
HMM, conditioned on the acoustic inputs. The transition proba-
bilities are then used to estimate the global posterior probabilities
of HMM state sequences. A parallel architecture that implements
a simple speech recognition model in real-time is presented.

I. INTRODUCTION

Speech recognition is a complicated problem when mapped
to hardware especially when one is limited by hardware re-
sources like silicon area on a chip. Therefore, one seeks a
design approach which is flexible and scalable to meet hard-
ware requirements of high and low complexity by trading off
with the accuracy of the system. This however, requires insight
into the working of the system so that desired results can be
achieved by appropriate controlling of the design parameters.

Hidden Markov Model (HMMs) have been the principle be-
hind all practical speech recognition systems. This is largely
because they provide a unified framework on the basis of which
the entire recognition system can be build . However with this
scalable feature HMMs are plagued by an explosion in param-
eter space for which there is not enough data to estimate their
values reliably, leading to problems of over-fitting and hence
poor generalization .

Support Vector Machines (SVMs) on the other hand are ap-
pealing for our purpose mainly because

1. They generalize well even with relatively few data points
in the training set, and bounds on the generalization error
can be directly estimated from the training data.

2. The only parameter that needs to be chosen is a penalty
term for misclassification which acts as a regularizer [9]
and determines a trade-off between resolution and gener-

This work is supported by grants from The Catalyst Foundation, New York

Proc. 43rd IEEE Midwest Symp. on Cucmts and Systems, Lansing MI, Aug 8-11, 2000
0-7803-6475-9/00/$10.00 ©IEEE 2000- . .

alization performance. Hence we can control its learning
ability.

3. The algorithm finds, under general conditions !, a unique
separating decision surface that provides the best out-of-
sample performance.

By combining SVMs with HMMs we would want to get the
best from both the worlds, the scalability of the HMM com-
bined with the insight and better generalization ability of the
SVM concept. The focus of this paper is to describe a sys-
tem architecture based on the hybrid approach and provide an
analog circuit implementation for it. Section II describes the
overall speech recognition problem and fits the support vector
formulation into it. Section III describes circuit implementa-
tion for the hybrid approach. Section IV describes some of
the simulation results obtained using SpectreS and section V
finally summarizes the inferences that can be drawn.

II. MAP FORMULATION FOR SPEECH RECOGNITION

Speech recognition problem involves finding out the most
probable spoken sentence M given a sequence of acoustic vec-
tors or feature vectors

M= argmax P(M|X, L,6) Q)

where X is input acoustic vector sequence,L is language model
,0 represent parameters in the model M and P(.) denotes a
probability measure.

An HMM MAP(Maximum aposteriori) formulation decom-
poses the equation (1) into

P(M|X,L,0) = ZP(M,mX,L,e) 10))
. Fj

= Y P(M|X,L,6,T,)P(T;|X, L,6§3)
r;

where I'; is the jth path through the trellis of an HMM [1]
which consists of sequence of states {q;[1], ¢;[2], ...-, gj[n]} ,
qi[n] representing occurance of state k at n*" stage of the trel-
lis. The first term in (3) represents the probability of a state

LThere can be pathological cases under which the problem of finding the

support vectors is degenerate and a unique solution or any solution may not
exist, but one can detect such case and therefore avoid it.

828

sequence belonging to a sentence model M, which can be as-
sumed to be a binary indicator function [2]. Using the first
order markov assumption the resultant equation can then be
solved by the forward recursion algorithm given by

O‘k[n} = E aj[n - 1]P(qk[n]‘Qj[n - 1]7 XaLa 0) (4)

J

where o is the probability of being in state k at nth stage
of the trellis P(gx[n]|X,L,6) [2]. The philosophy behind
the hybrid approach is to generate the posterior probabilities
P(gx[n]lg;[n — 1], X, L,8) in equation (4) by using SVMs.

A. Support Vector Machines and Speech Recognition

In its basic form, an SVM classifies a pattern vector x based
on the training data points 2 ¢ and corresponding labels ¥, into
classes {—1, 41} based on the sign of y in

L

Y= deye K(xe,%) b
=1

®

where K (-,-) is a symmetric positive-definite kernel func-
tion which can be freely chosen subject to fairly mild con-
straints [12]. Several widely used classifier functions reduce to
special valid forms of kernel functions, like polynomial classi-
fiers, multilayer perceptrons?, and radial basis functions. The
obtained support vectors are found to be almost invariant to
the type of kernel function used [4], which indicates that the
choice is not critical to classification performance.

The parameters A, and b are determined by a linearly con-
strained quadratic programming problem [4], [7], which can
be efficiently implemented by means of a sequence of smaller
scale subproblem optimizations [11]. The key point for effi-
cient implementation of the SVM is that typically only a small
fraction of the A\, coefficients are non-zero. In other words,
only a small set of support vectors (“prototypical” data points
X¢ with non-zero Ay) are needed in the classification of y.

For extending the concept to generate posterior probabilities
for multiclass problems we can use different support vector
machines for classifying each class and moderating their out-
puts by

Pr(k) = g(yx) ©®

where g(yi) = exp(yx)/ 2_, exp(yp) -y is the output of the
k" support vector classifier and Pr(k) is the probability mea-
sure of the kth output [10]. State transition and conditional
class probabilities for equation (4) can be obtained by includ-
ing the hidden variable g{n-1] along with the observations z
into a concatenated feature vector 2’ presented to the SVM.,

2with logistic sigmoidal activation function, for particular values of the
threshold parameter only

TABLEI
System specification and sizing
D Input Vector Dimension 6
L | Number of support vectors 8
per conditional class
N | Total number of HMM states | 16

v

\ SVM Block =
—+ — 3
= —b — B 2
'E —4| Kemel . Coefficient g
g —+| Block . block =
Q H ° 2
g — 3
s] S
] | e gl : E‘;

' 128 K(x,x) 256 = z K(xx) g

Fig. 1. Block diagram of the overall system. The kernel block consists of 6
input stages corresponding to each di and 16x8x6 transistors storing
support vectors. The Coefficient block consists of 16x16 transistors storing
parameters \;.

III. CIRCUIT IMPLEMENTATION

The block diagram of the overall system is shown in figure
(1) and its size is specified by table I. The circuit generates
probabilities of being in a particular state k (o), k = 1..16
based on continuous valued input vectors.

The input vectors are presented to the SVM block which per-
form the support vector computation to generate unnormalized
posterior probabilities) given by

8
Q(qk[n]|qj[n—1],x[n]) = Zzng()ng) ,J € (17" 716)

=1
0))
where sz = /\ik yﬁk’. A reasonable assumption we have used
in the above equation is that the support vectors for each pre-
conditioned input g[n — 1] in equation (4) will be similar. The
constant b in equation (5) is absorbed by dedicating one ex-
tra constant component to the input vetor x. Therefore each
output of the kernel block is reused by an equal number of pa-
rameters zgk in the coefficient block and leads to savings in
silicon space.

1) SVM Block: The SVM block consists of two main func-
tional parts namely the kernel block and the coefficient block
shown in figure 1. Figure 2 shows the schematic of a cell in
the kernel block. The kernel function that we have used in the
circuit is a polynomial kernel of the type K (x,y) = (x.y)?
which is simpler to implement.

The support vectors in the SVM block and the parameters z ¢
are stored on floating gate transistors shown by M6 in figure
(2) which can be programmed by hot electron injection and

829 .

Ve

Fﬁp

H
jzﬂr,

vl.\
Vad
3
K

55

L
=

v,

‘unn

nn

(xx)

Vbias .
Fig. 2. Schematic of the kernel sub-block of the SVM block.

tunneling using terminals Vi, and V, [6].

The input to the kernel block as shown in figure 2 are pre-
sented as currents and the output is the scaled logarithm of of
the input current. The block consists of a floating gate tran-
sistor M4 which tries to cancel the effects of x variation of
the support vector floating gate transistors. It uses a nega-
tive feedback loop transistor M3 which decreases the output
impedance of the circuit and regulates the output voltage. This
output voltage is then presented at the source of the floating
gate transistor M6 where the support vectors are stored. The
output current at the drain of the floating gate transistor M6 is
then approximately equal to the product of the value stored at
the floating gate to the value presented at the drain given by the
sub-threshold equation for pMOS transistor in saturation

I=1I,W/Le *Ve/UreVs/Ur ®

Schematic 2 also shows a squaring circuit M7-M9 that im-
plements the (.)? function.

A similar circuit in coefficient block is used for the calculat-
ing the sum of product of the support vectors with the param-
eters A\¢ according to equation (7). The unnormalized proba-
bilities () forms the input to the forward decoding block which
implicitly normalizes their values for probability generation.

2) Forward Decoding Block: The forward recursion given
by is implemented using the probability propagation and de-
coding circuitry given by and a use of a low pass g,,-C filter
to implement a delay element in continuous domain.

The basic element of this block consists the schematic shown
in figure 3 where the output of each of the output lines is given
by

Lij = LI/ 1s)(Iy,; /1)
with I Yimi Layis Iy E;L—_—l Iy,; and I.
Dy Z;‘zl I;; = I.. More details about the circuit can be
found in [8]. The output of this block are true probabilities as
they are all normalized with respect to currents I, and I,,.

®

830

E]

]l
Wl
T
g
,;, |

1 x,n

Fig. 3. Schematic of the probability propagation circuit as given in [8].

vdd
vdd

Vret P Vret
M1 M7
o(n)
M2 M4
=, OQutput
Ty (n1)P(ljx)
M8
normalizing

current

Fig. 4. Schematic of the gm-C filter used as a delay element in continuous
mode architecture.

Once the sum-product output [, (proportional to «[n — 1]
is obtained the values of « have to be re-initialized according
to equation (4). A continuous domain delay can be simulated
by using a low pass filter. In the prototype implementation a
gm-C filter has been used as shown in the figure 4. Its a non-
inverting differential amplifier with a capacitor at the output to
form a gamma filter configuration.

IV. EXPERIMENTS AND RESULTS

To gain insight into the working of the overall system we took
a simple problem and applied the hybrid approach for pattern
sequence classification. Given a long sequence of english text
we want to learn how vowels and consonant patterns behave
with respect to state sequences given by equation (4).

To impose hardware constraints to the above problem we
would like to implement the above functionality using 2 di-
mension input vector and 2 support vectors per state. All the
vowels and consonants were mapped to two dimensional vec-
tors and clustered near each other. For example consonant p is
represented by (0.8,0.2) and vowel a is represented by (0.2,0.8)
vectors. For this particular problem we used a two state fully
connected HMM model and trained it on the given 30000

Computer simulation for word paper
T T T T

T T T

~r

L]
Tterations.

SpoctroS simulation for paper
. T T

o 2 4 6 8

10 12 14 16 18 20
time Inms.

Fig. 5. Computer and spectreS outputs of the system for the two state two
dimensional system for the word paper.

Resutts tor the word ppppp
T T

07 — r T T T
08} 4
z
gn.ﬁ—
g
04f
oal== Jm i e 2 " s L "
1 2 3 4 5 6 8 9 10 1
itarations.
SpoctreS simulation for ppppp
14 . . . T T
12
10 |
2
8-]
0" ’ — -
4

o 2 4 L 8 10 12 14 186 18 20
time inms

Fig. 6. Computer and spectreS outputs of the system for the two state two
dimensional system for the word ppppp.

alphabet sequence using forward backward algorithm [13].
Then we extracted the most probable state sequence through
this HMM using the viterbi algorithm to generate sequence of
tuples of the form {g/n], q[n-1] ,x(n)}. Using a threshold value
as a design parameter all the data points less than 1% count val-
ues were eliminated to generate sparse data and also reducing
the size of the support vector training. With these data points
we train four support vector machines each for previous state
values g/n-1] and then extract only the unbounded (essential)
support vectors from each training routine. Because our circuit
performs all computation in a single quadrant we biased all the
values appropriately to obtain an architecture which conforms
to the system/hardware requirement.

Figures (5)and (6) shows the result of system algorithm im-
plemented in matlab and circuit simulation using the obtained
values from the procedure in the previous section. The first
graph shows plots for a valid word paper and the second one

AP

shows plots for an invalid word ppppp. The circuit simulation
matches the smoothed out version of the matlab simulation of
the algorithm and both of them produce results intuitive from
theoretical arguments.

V. EXTENSIONS AND CONCLUSIONS

The simple example illustrated in the above section can be
extended to speech recognition using the system shown in fig-
ure (1). However the training procedure would be more so-
phisticated than the one described and forms a part of the future
work.

In this paper we proposed a design approach using SVM and
HMM and a circuit implementing the approach. We also ap-
plied it to a simple problem of pattern sequence recognition.
In the context of speech recognition we can use a 16 state fully
connected HMM to generate sequence of articulatory states
which can then be used as training data for a support vector
machine that can be mapped directly onto hardware.

REFERENCES

[1] H. Bourlard and N. Morgan Connectionist Speech Recognition -A Hybrid

Approach, Kluwer Academic Publishers, 1994.

Y. Konig, REMAP: Recursive Estimation and Maximization of A Posteri-

ori Probabilities in Transition-Based Speech Recognition, Ph.D. Disser-

tation, Computer Science, UC Berkeley, 1996.

F. Jelinek, Statistical Methods for Speech Recognition, MIT Press, Cam-

bridge, 1999.

[4] V. Vapnik, The Nature of Statistical Learning Theory, Second Edition,
Springer, 1999.

[5] G. Cauwenberghs and M. Bayoumi, Learning on Silicon, Kluwer Aca-
demic Publishers, Boston 1999.

[6] P. Hasler,B. Minch,J. Dugger and C. Diorio, Adaptive Circuits and
synapses using PFET Floating Gate Devices, Leamning on Silicon:
Kluwer Academic Publishers, Boston 1999.

[7] B. Scholkopf, C. Burges and A.Smola, eds., Advances in Kernel Methods-
Support Vector Learning, MIT Press, Cambridge 1998.

[8] H. Loeliger, F. Lustenberger, M. Helfenstein and F. Tarkoy, Probability
Propagation and decoding in Analog VLSI, ISIT,JEEE, 1998.

[9] Girosi, F., Jones, M. and Poggio, T. “Regularization Theory and Neural
Networks Architectures,” Neural Compuzation, vol. 7, pp 219-269, 1995.

[10] Jaakkola, T. and Haussler, D., “Exploiting Generative Models in Dis-
criminative Classifiers,” to appear in Adv. Neural Information Processing
Systems (NIPS*98), 1999.

[11] Osuna, E., Freund, R., and Girosi, F., “Training support vector machines:
An application to face detection,” in Computer Vision and Pattern Recog-
nition, pp 130-136, 1997.

[12] Boser, B., Guyon, L and Vapnik, V., “A training algorithm for optimal
margin classifier,” in Proceedings of the Fifth Annual ACM Workshop on
Computational Learning Theory, pp 144-52, 1992.

[13] Baum, R. and Eagon, J.A., “An Inequality with Applications to Statisti-
cal Estimation for Probabilistic Functions of Markov Processes and to a
Model for Ecology,” in Bulletin of American Mathematical Society , vol.
73, pp 360-63, 1967.

[2

—

3

=

831

