This site provides freely downloadable Matlab code, data files, and example scripts for incremental SVM classification, including exact leave-one-out (LOO) cross-validation.
To start, run test_2d.m or test_diabetes.m at the Matlab prompt. Make sure to have all *.m and *.mat files in your directory. Use the Matlab "help" function to find syntax and more information on the implemented functions. Some of the parameters are available as global variables in the workspace (see test*.m for examples).
This software is in the public domain; there are no implied warranties of any kind! Send bug reports to gert@ucsd.edu.
1934 Nov 13 2007 README 811 Jan 14 2001 SetFont.m 326 Jan 14 2001 SetMarker.m 31172 Jan 14 2001 atraj.eps 2328 Jan 14 2001 data.mat 100144 Jan 12 2001 diabetes.mat 10416 Jan 14 2001 gctraj.eps 385 Jun 30 1999 genlindata.m 723 Jan 14 2001 gennonlindata.m 79053 Jan 14 2001 gtraj.eps 896 Jun 6 2002 kernel.m 2328 Jul 2 1999 lindata100.mat 18528 Jun 30 1999 lindata1000.mat 2808 Jan 14 2001 nonlindata100.mat 37697 Jan 14 2001 points.eps 79217 Jan 14 2001 pointsc.eps 1759 Jan 13 2001 svcm_run.m 2167 Jan 13 2001 svcm_test.m 31930 Jun 7 2002 svcm_train.m 2725 Jan 14 2001 test_2d.m 528 Jan 14 2001 test_diabetes.m 189240 Jan 14 2001 traj.mat Matlab functions and scripts: svcm_*.m support vector classification machine kernel.m kernel function used in svcm_*.m test*.m example demo scripts Set*.m graphics formatting gen*.m data generating functions Matlab sample data: *.mat vectors x [L,N], and labels y [L,1] (-1 or 1) Sample output display: *.eps encapsulated PostScript
G. Cauwenberghs and T. Poggio, "Incremental and Decremental Support
Vector Machine Learning," in Adv. Neural Information Processing
Systems (NIPS*2000), Cambridge MA: MIT Press, vol. 13, 2001.
http://isn.ucsd.edu/papers/nips00_inc.pdf
C.P. Diehl and G. Cauwenberghs, "SVM Incremental Learning, Adaptation and
Optimization," Proc. IEEE Int. Joint Conf. Neural
Networks (IJCNN'2003), Portland OR, July 20-23, 2003.
http://isn.ucsd.edu/papers/ijcnn03_inc.pdf
SVM incremental on-line classification, LOO evaluation, and
hyperparameter optimization (Chris Diehl):
https://github.com/diehl/Incremental-SVM-Learning-in-MATLAB
SVM incremental on-line regression (Francesco Parrella):
http://onlinesvr.altervista.org/