Neurodynamics

Week 2 Computational Lab

Problem 1 dn,

Part (a) ar = an(Vm)(l — n) — 5n(Vm)n
For an ODE of the form:
@

+ P(x)y = Q(x
Integrating iz T)

factor! |(X) The integrating factor is:

And the resulting solution to the ODE is:
To get numerical values, use: 1

v, (1) = OmV 0<t < 10sec y(r) = I(z) /I(:U)Q(:l:)d.r
" 30myV 10 <t

Problem 1 (b,c)
Part (b):

Definition of tau? (week 2 slides)

Part (c):

ODE function in language of choce

Problem 1 (d)

Simulate this Markov process stochastically to find
the fraction of gates open, n(t).

O‘n(‘/m)
1—n = n

Brn(Vin)

Markov chains

P(stay closed)

Markov chains

P(open)

P(stay closed)

P(stay open)

P(close)

Markov chains

0.8
1-08=0.2

(]
closed

(0)

0.6

0.8

Markov chains

0.2
Q
If state is closed: closed
(0)

P(open) = 0.8
P(stay closed) = 0.2
0.6

a P Number =l Do something

stay closed open
| | :

0 02 ,

0.8

Markov chains

0.2
' ’ 0.4
: closed
If state is closed:

P(open) = 0.8
P(stay closed) = 0.2
0.6

a_V 043 =———) Do something?

. | .

— |
0 02 open 1

stay closed

P(stay closed) = 0.2

0.8
Markov chains 0.2 . .
If state is closed: '
P(open) = 0.8
0.6

. ! ,

| . .
0 0.2 open 1

stay closed

P(stay closed) = 0.2

a— 0.13 e Stay Closed

L .

| . .
0 0.2 open 1

stay closed

0.8
Markov chains 0.2 . .
If state is closed: ’
P(open) = 0.8
0.6

Problem 1 (d) — What are the probabilities?

P(open)
P(stay closed)
. ’ P(stay open)
closed
(0)
P(close)
* Opening rate: Oip *P(open): Qp At

- Closing rate: [3,, *P(close): [, At

Problem 1(d)

» Assume there are N gates;

» At a short time window At, every gate will update
its state (from close to open or from open to
close or keep its state)

» Calculate the fraction of open gates after time T.

Problem 1 (d)

N =1000 # number of gates

gate_states = np.zeros(N) # all gates start closed
output =[]
for timepoint in t: # do this for all time points in simulation
for gate in range(N): # "throw a dart" for each gate
r = np.random.rand() # psuedo-random number generator
If gate_states[gate] == 0:
Probability of transition to open if the gate is closed
gate_states[gate] = ini(r < (t_step * alpha_n(tp)))
else:
Probability gate will stay open if open
gate_states[gate] = ini(r < (1 - t_step * beta_n(tp)))
output.append(sum(gate_states) * 1.0 / N)
return output

This is the partial codes of this problem !

Problem 2

Example codes should be
helpful.

Problem 3(a)

p = np.polyfit(n,h,1);

h reg =A-—un

Problem 3(a,b)

linear regression

© np.polyfit(n,h,1);
h reg = 7

Problem 3(a,b)

How strong is the relationship?
calculate the correlation coefficient:

corrcoef(n,h);

Good Luck!

