Neurodynamics
 Week 3 Computational Lab

Problem 1 A

Nullclines: https://mcb.berkeley.edu/courses/mcb137/exercises/Nullclines.pdf

1. Set up the ML or HH models like in the last homework assignment Input the ML functions given in the assignment

2. Create matrix of V-w values:

v = np.linspace(vmin, vmax, pointcount);
$\mathrm{w}=\mathrm{np}$. linspace(wmin, wmax, pointcount);
what are reasonable min/max values for V? Try ~ 30 points
what is w ? So, what are reasonable min/max values? (30 points again)
$[\mathrm{V}, \mathrm{W}]=$ np.meshgrid $(\mathrm{v}, \mathrm{w}) ; \quad$ creates matrix of v, w values
3. Use the functions given in the example code:
[X_null_V_I, Y_null_V_I] = getNullcline(dVdt(V, W, I_ext_I); \% repeat for other currents (I_ext_2 ...)
[X_null_w, Y_null_w] = getNullcline(dwdt(V, W), v, w);
[xint_I, yint_I] = getCrossings(X_null_V_I, Y_null_V_I, X_null_w, Y_null_w);

Problem 1 A (con't)

Should look something like this (different external current values)

Problem 1B, C, D

B: To determine stability of a stationary point, look at the eigenvalues.

```
J_I = getJacobian(V, W, dVdt(V, W, I_ext_I ), dwdt(V, W), xint_I, yint_I);
```

[VI, DI] = eig(J_I); \%V and D have real and imaginary components
C: Verify the stability by plotting simulated trajectories starting from different initial points.

```
t = 0:0.001:100;
thetas = 0:45:180;
for i = I:5:
    dXdtI = @(tI, XI) [dVdt(XI(I), XI(2), I_ext_I); dwdt(XI(I), XI(2))];
    [tI,XI] = ode23(dXdtI, t, [xint_I + cos(thetas(i) * (3.14I59)/I80), yint_I + sin(thetas(i) * (3.14 I 59)/I80)]);
end
```

D: Repeat analysis in A, B, C for the fourth current.

Problem 2

- Same as Problem 1 but with Reduced HH model.
- Compare the two.

