Neurodynamics

Computational Lab 4

1. Basic HH Model

(5)

Current Equations

$\frac{dV}{dt}$	=	$\frac{1}{C}\left(-I_{Na} - I_K - I_L + I_{ext}\right)$	(1)
I_{Na}	=	$g_{Na} m^3 h \left(V - E_{Na} \right)$	(2)
I_K	=	$g_K n^4 \left(V - E_K \right)$	(3)
I_L	=	$g_L \left(V - E_L \right)$	(4)

Parameters

C	=	$1 \ \mu F/cm^2$			
E_{Na}	=	$45 \ mV;$	g_{Na}	=	$120 mS/cm^2$
E_K	=	$-82 \ mV;$	g_K	=	$36 mS/cm^2$
E_L	=	-59.387 mV;	g_L	=	$0.3 mS/cm^2$

Gating variable differential equations

$\frac{dm}{dt}$	=	$\alpha_m(V) (1-m) - \beta_m(V) m$	(6)
$\frac{dh}{dt}$	=	$\alpha_h(V) (1-h) - \beta_h(V) h$	(7)
$\frac{dn}{dt}$	=	$\alpha_n(V) (1-n) - \beta_n(V) n$	(8)

Gating variable nested equations

$$\alpha_m(V) = 0.1(V+45)/(1-\exp(-(V+45)/10))$$
(9)

$$\beta_m(V) = 4 \exp(-(V+70)/18)$$
 (10)

$$\alpha_h(V) = 0.07 \exp(-(V+70)/20) \tag{11}$$

$$\beta_h(V) = 1/(1 + \exp((-(V + 40))/10))$$
(12)

$$\alpha_n(V) = 0.01(V+60)/(1 - (\exp((-(V+60)/10) - 1)))$$
(13)

$$\beta_n(V) = 0.125 \exp(-(V+70)/80) \tag{14}$$

2. Add Inhibition

Current Equations

$\frac{dV}{dt}$	=	$\frac{1}{C} \left(-I_{Na} - I_K - I_L + I_{ext} \right)$	(1)
I_{Na}	=	$g_{Na} m^3 h \left(V - E_{Na} \right)$	(2)
I_K	=	$g_K n^4 (V - E_K)$	(3)
I_L	=	$g_L \left(V - E_L \right)$	(4)
I_{syn}	=	$g_{GABA_A} r \left(V_{post} - E_{Cl} \right)$	(15)

Parameters

C	=	$1 \ \mu F/cm^2$	
E_{Na}	=	$45 \ mV; \qquad g_{Na} = 120 \ mS/cm^2$	(5)
E_K	=	$-82 mV;$ $g_K = 36 mS/cm^2$	(\mathbf{J})
E_L	=	$-59.387 \ mV; q_L = 0.3 \ mS/cm^2$	
E_{Cl}	=	$-80\ mV$	
$lpha_r$	=	$5 m M^{-1} m s^{-1}; \beta_r = 0.18 m s^{-1}$	(19)
$T]_{max}$	=	$1.5 \ mM$	(10)
K_p	=	$5 mV;$ $V_p = 7 mV$	
· ·		-	

Gating variable differential equations

$$\frac{dm}{dt} = \alpha_m(V) (1-m) - \beta_m(V) m$$
(6)
$$\frac{dh}{dt} = \alpha_h(V) (1-h) - \beta_h(V) h$$
(7)
$$\frac{dn}{dt} = \alpha_n(V) (1-n) - \beta_n(V) n$$
(8)
$$\frac{dr}{dt} = \alpha_r[T] (1-r) - \beta_r r$$
(16)

Gating variable nested equations

$\alpha_m(V) = 0.1(V+45)/$	$1 - \exp(-(V + 45)/10))$	(9)
----------------------------	---------------------------	-----

$$\beta_m(V) = 4 \exp(-(V+70)/18) \tag{10}$$

$$\alpha_h(V) = 0.07 \exp(-(V+70)/20) \tag{11}$$

$$\beta_h(V) = 1/(1 + \exp((-(V + 40))/10))$$
(12)

$$\alpha_n(V) = 0.01(V+60)/(1 - (\exp((-(V+60)/10) - 1)))$$
(13)

$$\beta_n(V) = 0.125 \exp(-(V+70)/80)$$
 (14)

$$[T] = [T]_{max}/(1 + \exp(-(V_{pre} - V_p)/K_p))$$
(17)

3. Add Excitation

Current Equations

$\frac{dV}{dt}$	=	$\frac{1}{C} \left(-I_{Na} - I_K - I_L + I_{ext} \right)$	(1)
I_{Na}	=	$g_{Na} m^3 h \left(V - E_{Na} \right)$	(2)
I_K	=	$g_K n^4 (V - E_K)$	(3)
I_L	=	$g_L \left(V - E_L \right)$	(4)
I_{syn}	n = 1	$g_{GABA_A} r \left(V_{post} - E_{Cl} \right)$	(15)

Parameters

$C = 1 \ \mu F/cm^2$ $E_{Na} = 45 \ mV; \qquad g_{Na} = 120 \ mS/cm^2$ $E_K = -82 \ mV; \qquad g_K = 36 \ mS/cm^2$ $E_L = -59.387 \ mV; \qquad g_L = 0.3 \ mS/cm^2$	(5)
$\begin{array}{rclrcl} E_{Cl} &=& -80 \ mV \\ \alpha_r &=& 5 \ mM^{-1}ms^{-1}; & \beta_r &=& 0.18 \ ms^{-1} \\ [T]_{max} &=& 1.5 \ mM \\ K_p &=& 5 \ mV; & V_p &=& 7 \ mV \end{array}$	(18)
E = -38 mV $\alpha_r = 2.4 mM^{-1}ms^{-1}; \beta_r = 0.56 ms^{-1}$ $T]_{max} = 1.0 mM$ $g_{Glu} = 0 \text{ to } 0.5 mS/cm^2$	(19)

Gating variable differential equations

$$\frac{dm}{dt} = \alpha_m(V) (1-m) - \beta_m(V) m \tag{6}$$

$$\frac{dh}{dt} = \alpha_h(V) \left(1 - h\right) - \beta_h(V) h \tag{7}$$

$$\frac{dn}{dt} = \alpha_n(V) (1-n) - \beta_n(V) n \tag{8}$$

$$\frac{dr}{dt} = \alpha_r[T] (1-r) - \beta_r r$$
(16)

$$\begin{array}{rcl} \textbf{Gating variable nested equations} \\ \alpha_m(V) &= 0.1(V+45)/(1-\exp(-(V+45)/10)) & (9) \\ \beta_m(V) &= 4 \exp(-(V+70)/18) & (10) \\ \alpha_h(V) &= 0.07 \exp(-(V+70)/20) & (11) \\ \beta_h(V) &= 1/(1+\exp((-(V+40))/10)) & (12) \\ \alpha_n(V) &= 0.01(V+60)/(1-(\exp((-(V+60)/10)-1)) & (13) \\ \beta_n(V) &= 0.125 \exp(-(V+70)/80) & (14) \\ [T] &= [T]_{max}/(1+\exp(-(V_{pre}-V_p)/K_p)) & (17) \end{array}$$

Single Neuron

def d_single(hh_vars, t, I_ext, g_GABA, g_Glu)

Vectorize Variables:

 $hh_{-}vars = \begin{vmatrix} v \\ m \\ h \\ n \\ r_{-}inhibit \end{vmatrix}$

I_ext is applied external current

g_GABA is a matrix of inhibitory synapses where <u>each row is the presynaptic cell and the</u> column is the postsynaptic cell. Same for **g_Glu** except that it is excitatory.

$$g_{-}GABA = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}_{2}^{1} \qquad g_{-}GABA = \begin{bmatrix} 0 & 0.1 \\ 0.1 & 0 \end{bmatrix}_{2}^{1}$$

No connection

0.1 conductance

return system of odes for hh_vars

Multiple Neurons

def network(I_exts, g_GABA, g_Glu)

I_exts is a function handle that accepts the time and returns a row vector of current applied to each cell.

Network function solves system of odes for all neuron in network

There is an addition function d in the supplied code that is required to reshape the system of odes to solve for a network

Problem 1

One neuron gets 10 uA (starting at Oms) and the other gets 20 uA
I_exts_ = sp.array([10, 20]) # uA/cm^2
def I_exts(t): return I_exts_ # Creates time series out of input current, I

```
# g_GABA and g_Glu matrices are all 0 for no connections
nocon2 = sp.zeros((2,2))
hh_vars = network(I_exts, nocon2, nocon2)
```

```
V = hh_vars[0,:,:]
# Looking at spike rate using isi function
for i in range(len(I_exts_)):
    mean_isi, stddev_isi = isi(t[2501:], V[i,2500:]) # skip the first 250ms
```

Note: isi function gives interspike interval. 1000 / mean interspike interval converts ms to Hz for frequency

Problem 2

One neuron gets 10 uA (starting at 0ms) and the other gets 20 uA (same input)
I_exts_ = sp.array([10, 20]) # uA/cm^2
def I_exts(t): return I_exts_

```
# We will test the following g_GABA values:
g_GABAs = np.arange(0, 0.6, 0.1)
g_GABAs = np.append(g_GABAs, np.arange(1.0, 4.0, 0.5))
```

m = sp.zeros((2, len(g_GABAs))) # initialize means

```
for i in range(len(g_GABAs)):
    # g_GABA has reciprical connections [[0, x], [x, 0]], g_Glu is all 0 (just inhibitory)
    hh_vars = network(I_exts, sp.array([[0,g_GABAs[i]],[g_GABAs[i],0]]), nocon2)
    # Look at voltage results
```

```
V = hh_vars[0,:,:]
for j in range(len(I_exts_)):
    m[j,i], s = isi(t[2501:], V[j,2500:]) # skip the first 250ms
    sr = 1000/m[j,i]
    if (sp.isnan(sr)): sr = 0
```

Problem 3

One neuron gets 10 uA (starting at 0ms) and the other gets 10.1 uA (DIFFERENT input)
I_exts_ = sp.array([10, 20]) # uA/cm^2
def I_exts(t): return I_exts_

```
# g_GABA has reciprical connections [[0, 0.2], [0.2, 0]], g_Glu is all 0
g_GABA = sp.array([[0.0, 0.2],[0.2, 0.0]])
```

```
# The beta_r's to test (was previously just 0.18)
beta_rs = np.arange(0.5, 0, -0.1)
```

p = sp.zeros(len(beta_rs)) # initialize phase array

```
for i in range(len(beta_rs)):
    beta_r_inhibit = beta_rs[i]  # change beta values in network
```

```
# Run simulation for each beta_r
hh_vars = network(I_exts, g_GABA, nocon2)
```

```
# Look at voltage results
V = hh_vars[0,:,:]
# Find spike phase with python tools
```

p[i], mean_isi = spk_phase(t[2501:], V[0, 2500:], V[1, 2500:]) # skip first 250ms

Note: remember to set beta_r_inhibit back to its original value of 0.18 when finished with this problem before continuing

