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Statistical Learning Theory and Support Vector Machines
OUTLINE

• Introduction to Statistical Learning Theory
– VC Dimension, Margin and Generalization
– Support Vectors
– Kernels

• Cost Functions and Dual Formulation
– Classification
– Regression
– Probability Estimation

• Implementation: Practical Considerations
– Sparsity
– Incremental Learning

• Hybrid SVM-HMM MAP Sequence Estimation
– Forward Decoding Kernel Machines (FDKM)
– Phoneme Sequence Recognition (TIMIT) 
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Generalization and Complexity

– Generalization is the key to supervised learning, for 
classification or regression.

– Statistical Learning Theory offers a principled approach to 
understanding and controlling generalization performance.

• The complexity of the hypothesis class of functions determines 
generalization performance.

• Complexity relates to the effective number of function parameters, 
but effective control of margin yields low complexity even for infinite 
number of parameters.



G. Cauwenberghs 520.776 Learning on Silicon

– For a discrete hypothesis space H of functions, with probability 1-δ:

where                                             minimizes empirical error over m
training samples {xi, yi}, and |H| is the cardinality of H.

VC Dimension and Generalization Performance
Vapnik and Chervonenkis, 1974
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– For a continuous hypothesis function space H, with probability 1-δ:

where d is the VC dimension of H, the largest number of points xi
completely “shattered” (separated in all possible combinations) by 
elements of H.
– For linear classifiers in N dimensions, the VC 
dimension is the number of parameters, N + 1.
– For linear classifiers with margin ρ over a domain contained within 
diameter D, the VC dimension is bounded by D/ρ.
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Learning to Classify Linearly Separable Data

– vectors  Xi

– labels  yi = ±1
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Optimal Margin Separating Hyperplane

– vectors  Xi

– labels  yi = ±1
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Support Vectors

– vectors  Xi

– labels  yi = ±1

– support vectors:
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Support Vector Machine (SVM)

– vectors  Xi

– labels  yi = ±1

– support vectors:
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Soft Margin SVM

– vectors  Xi

– labels  yi = ±1

– support vectors:
(margin and error vectors)
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Kernel Machines
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Some Valid Kernels
Boser, Guyon and Vapnik, 1992

– Polynomial (Splines etc.)

– Gaussian (Radial Basis Function Networks)

– Sigmoid (Two-Layer Perceptron)
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Other Ways to Arrive at Kernels…

• Smoothness constraints in non-parametric regression 
[Wahba <<1999]
– Splines are radially symmetric kernels.
– Smoothness constraint in the Fourier domain relates directly to 

(Fourier transform of) kernel.
• Reproducing Kernel Hilbert Spaces (RKHS) [Poggio 1990]

– The class of functions with orthogonal basis 
forms a reproducing Hilbert space.

– Regularization by minimizing the norm over Hilbert space yields 
a similar kernel expansion as SVMs.

• Gaussian processes [MacKay 1998]

– Gaussian prior on Hilbert coefficients yields Gaussian posterior
on the output, with covariance given by kernels in input space.

– Bayesian inference predicts the output label distribution for a new 
input vector given old (training) input vectors and output labels.
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Gaussian Processes

– Bayes:

– Hilbert space expansion, with additive white noise:

– Uniform Gaussian prior on Hilbert coefficients:

yields Gaussian posterior on output:

with kernel covariance

– Incremental learning can proceed directly through recursive 
computation of the inverse covariance (using a matrix inversion 
lemma).
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Kernel Machines: A General Framework 
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Log Prior Log Evidence          (Gaussian Processes)
Smoothness Fidelity             (Regularization Networks)

Structural Risk Empirical Risk (SVMs)

– g(.): convex cost function
– zi: “margin” of each datapoint
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Optimality Conditions

– First-Order Conditions:

with:

– Sparsity: requires
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Sparsity

Soft-Margin SVM Classification
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Dual Formulation
(Legendre transformation)

Eliminating the unknowns zi:

yields the equivalent of the first-order conditions of a “dual” 
functional ε2 to be minimized in αi:

with Lagrange parameter b, and “potential function”
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Soft-Margin SVM Classification
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Kernel Logistic Probability Regression
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GiniSVM Sparse Probability Regression
Chakrabartty and Cauwenberghs, 2002
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Soft-Margin SVM Regression
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Sparsity Reconsidered
Osuna and Girosi, 1999

Burges and Schölkopf, 1997
Cauwenberghs, 2000

– The dual formulation gives a unique solution; however primal (re-) 
formulation may yield functionally equivalent solutions that are sparser, 
i.e. that obtain the same representation with fewer ‘support vectors’ 
(fewer kernels in the expansion).

– The degree of (optimal) sparseness in the primal representation depends 
on the distribution of the input data in feature space.  The tendency to 
sparseness is greatest when the kernel matrix Q is near to singular, i.e. the 
data points are highly redundant and consistent.
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Logistic probability regression in one dimension, for a Gaussian kernel.
Full dual solution (with 100 kernels), and approximate 10-kernel “reprimal”
solution, obtained by truncating the kernel eigenspectrum to a 105 spread. 
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Logistic probability regression in one dimension, for the same Gaussian
kernel.  A less accurate, 6-kernel “reprimal” solution now truncates the kernel
eigenspectrum to a spread of 100. 
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Incremental Learning
Cauwenberghs and Poggio, 2001

– Support Vector Machine training requires solving a linearly constrained 
quadratic programming problem in a number of coefficients equal to the 
number of data points.

– An incremental version, training one data point at at time, is obtained by 
solving the QP problem in recursive fashion, without the need for QP 
steps or inverting a matrix.

• On-line learning is thus feasible, with no more than L2 state variables, where L
is the number of margin (support) vectors.  

• Training time scales approximately linearly with data size for large, low-
dimensional data sets.

– Decremental learning (adiabatic reversal of incremental learning) allows 
to directly evaluate the exact leave-one-out generalization performance 
on the training data.

– When the incremental inverse jacobian is (near) ill-conditioned, a direct 
L1-norm minimization of the α coefficients yields an optimally sparse 
solution.
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Trajectory of coefficients a as a function of time during incremental learning,
for 100 data points in the non-separable case, and using a Gaussian kernel. 
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Trainable Modular Vision Systems: The SVM Approach
Papageorgiou, Oren, Osuna and Poggio, 1998

– Strong mathematical 
foundations in Statistical 
Learning Theory (Vapnik, 
1995)

– The training process selects a 
small fraction of prototype 
support vectors from the data 
set, located at the margin on 
both sides of the 
classification boundary (e.g., 
barely faces vs. barely non-
faces)

SVM classification for 
pedestrian and face 
object detection
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Trainable Modular Vision Systems: The SVM Approach
Papageorgiou, Oren, Osuna and Poggio, 1998

– The number of support 
vectors and their 
dimensions, in relation 
to the available data, 
determine the 
generalization 
performance

– Both training and run-
time performance are 
severely limited by the 
computational 
complexity of 
evaluating kernel 
functions

ROC curve for various 
image representations and 
dimensions
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Dynamic Pattern RecognitionDynamic Pattern Recognition

X[1]

q[1]

X[2]

q[2]

X[N]

q[N]

Generative: HMM Discriminative: MEMM, CRF, FDKM

X[1]

q[1]

X[2]

q[2]

X[N]

q[N]

Density models (such as 
mixtures of Gaussians) require 
vast amounts of training data to 
reliably estimate parameters.

Transition-based speech recognition
(H. Bourlard and N. Morgan, 1994)

MAP forward decoding
Transition 
probabilities
generated by 
large margin 
probability
regressor

1 2

P(1|1,x) P(2|2,x)

P(1|2,x) 

P(2|1,x)
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MAP Decoding Formulation

– States

– Posterior Probabilities
(Forward)

– Transition Probabilities

– Forward Recursion

– MAP Forward Decoding

q1[0] q1[N]

X[1] X[2]
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FDKM Training Formulation
Chakrabartty and Cauwenberghs, 2002

– Large-margin training of state transition probabilities, using 
regularized cross-entropy on the posterior state probabilities:

– Forward Decoding Kernel Machines (FDKM) decompose an upper 
bound of the regularized cross-entropy (by expressing concavity of 
the logarithm in forward recursion on the previous state):

which then reduces to S independent regressions of conditional 
probabilities, one for each outgoing state:
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Recursive MAP Training of FDKMRecursive MAP Training of FDKM

Epoch 1

n-1 n

1

2

Epoch 2

nn-1n-2

Epoch K

nn-1n-k

time

1

2
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Phonetic Experiments (TIMIT)Phonetic Experiments (TIMIT)
Chakrabartty and Cauwenberghs, 2002
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Conclusions
• Kernel learning machines combine the universality of neural 

computation with mathematical foundations of statistical 
learning theory.
– Unified framework covers classification, regression, and probability 

estimation.
– Incremental sparse learning reduces complexity of implementation and 

supports on-line learning.
• Forward decoding kernel machines and GiniSVM probability 

regression combine the advantages of large-margin 
classification and Hidden Markov Models.
– Adaptive MAP sequence estimation in speech recognition and 

communication
– EM-like recursive training fills in noisy and missing training labels. 

• Parallel charge-mode VLSI technology offers efficient 
implementation of high-dimensional kernel machines.
– Computational throughput is a factor 100-10,000 higher than presently 

available from a high-end workstation or DSP.
• Applications include real-time vision and speech recognition.
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