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Abstract 

Independent Component Analysis (ICA) and related algorithms provide a model 
for explaining how sensory information is encoded in our brains. However, it 
remains unclear how neural network uses its biological plasticity to achieve this 
ICA-like processing: maximization of information transmission or minimization 
of redundancy. Here, we consider a neuron model proposed by Savin, Joshi, and 
Triesch (2010), which includes three forms of plasticity in real neural 
network: spike-timing dependent plasticity (STDP), intrinsic plasticity (IP), 
and synaptic scaling. We investigate both theoretical and experimental 
aspects of the model and found that the three types of plasticity play 
important but different roles in efficiency and quality of learning. Although 
this neuron model cannot compete with classic ICA algorithms in solving 
blind separation problem, it provides a biological perspective that can 
potentially explain how our brains learn and why our brains have such high 
capacity and complexity. 

 

1 Introduction  

How our brains learn and encode a huge amount of information has been a long debating 
question. Information theories predict that neural network learn the sensory input by 
maximizing information encoded and reducing redundancies. Models based on independent 
component analysis (ICA) provide successful explanation of various properties in sensory 
coding in the cortex [1]-[2]. However, it remains unclear how networks of spiking neurons 
using realistic plasticity rules to realize such computation. 

 

1 .1  Indepe nde nt  co mpo ne nt  a na ly s i s  ( ICA)  

Independent component analysis is a computational signal processing technique for solving 
blind separation problem. ICA can extract statistically independent components from 
complex and high-dimensional signals such as EEG. Several theories and algorithms have 
been proposed for ICA problem, including infomax approach by Bell and Sejnowski [3], 
maximum likelihood estimation, negentropy maximization [4] and minimization of mutual 
information [5]. Te-Won Lee et al demonstrates that these approaches lead to the same 
iterative learning rules for solving blind separation problem of mixed independent sources 
[6]. However, few of them consider spiking neurons scenario and provide biological 
plausible mechanism for learning. 

 

 



1 .2   ICA- l i ke  p ro cess ing  in  neura l  ne tw o rk  

Although classic ICA algorithms are based on information and probability theories rather 
than biological mechanisms, they share similar concepts and learning strategies with 
principles of neural network. For example, Jutten and Herault [7]-[8] propose an adaptive 
algorithm, Jutten-Herault algorithm, for separating independent sources based on biological 
observations, which consider the architecture of a recursive neural network. Beck and Bell [9] 
adopt the idea of maximization of entropy of output spikes distribution in a feed-forward 
network, which lead to maximization of information flow between spiking neurons.  

Different from classic ICA, the neuronal learning is based on the mechanisms of metabolic 
constraints and many types of neuronal plasticity. However, several properties of natural or 
artificial neural network, including spike-timing dependent plasticity (STDP) and 
Hebbian-like learning, have shown to correspond to concepts of classic ICA algorithms [2]. 
The optimization criteria in classic ICA such as maximization of information transmission 
[10], maximization of entropy, and minimization of mutual information can lead to the 
learning principles in neural network like maximization of information encoded and 
minimization of redundancies. The ICA-like processing in neural network provides neuron 
models for us to explain and investigate how learning is achieved in our brains. 

 

1 .3  Spa rse  Co ding  

A related principle is sparse coding, which suggests that neurons encode sensory information 
by using only a small number of active neurons at each time point [11]. The model gives a 
metabolic efficiency perspective on the properties of V1 receptive field [12]. The concept is 
that spikes are energy-consuming and neurons must be regulated under tight energy 
constraints, which lead to sparse activity. Experiments report the near exponentially 
distribution of firing rates is observed in visual area when natural scenes present, which 
support the idea of sparse coding [13].  

 

1 .4   Neuro na l  p la s t i c i ty  a n d  l ea rn ing  

From the previous section, we discussed why the brain needs the ICA-like learning to encode 
and represent the information. The goal of this paper is to investigate the biologically 
plausible mechanism that brain actually achieves ICA-like learning. This paper introduces 
the neuron model that performs ICA-like learning using a three biological plasticity: intrinsic 
plasticity, spike-timing dependent plasticity, and synaptic scaling. As weights are updated 
based on certain learning rules in the classic mathematical ICA, parameters such as synaptic 
strength or the threshold voltage of a neuron are updated in a biological fashion in this 
neuronal ICA model. 

 

2 Methods 

2 .1  Neuro n  M o de l  

 

 

Figure 1: Neuronal model [14] 



In our simple neuronal model, presynaptic neurons are connected to postsynaptic neurons, 
and the synaptic strength is modeled as weight vector W. Firing rate of the postsynaptic 
neuron is changed by the intrinsic plasticity of the postsynaptic neuron. Weights are changed 
by spike-timing dependent plasticity and synaptic scaling, as shown in figure 1. 

 

2 .2   In tr ins i c  P la s t i c i ty  

2 .2 .1  B io log ica l  mea ni ng  o f  in t r ins i c  p la s t i c i ty  

Modern theories of memory has focused on the experience-dependent changes in synaptic 
function, but certain learning takes are related to the changes in the intrinsic excitability of 
neurons. The excitability of neurons can be altered by changing the function of voltage -gated 
ion channels, threshold voltage, neurotransmitter, and etc. Intrinsic plasticity (IP) refers to 
such change in intrinsic neuronal excitability [15]. One evidence of intrinsic plasticity in 
biology is shown in figure 2. 

 

 

Figure 2: Intrinsic plasticity in biology. [15] 

In this experiment, trace eyelid conditioning in rabbits was evoked. The neutral tone 
(conditioned stimulus, CS) was paired with an air puff (unconditioned stimulus, US). Before 
the training, the reflexive blink was the only response to the air puff (figure 2a). After one to 
seven days of training, carefully timed eye blink was evoked before the arrival of air puff 
(figure 2a). When the activity of CA3 and CA1 neurons was measured with the 
microelectrode recording, the activity of neurons increased after one day of the training. 
However, after 7 days of training, the intrinsic excitability returned to the baseline values 
while the memory for the association remains strong (figure 2b, 2c). This transient, about 1 
to 3 days, increase in excitability suggests that the intrinsic plasticity mechanism adjusted the 
ion channel properties and induced the persistent changes in neuronal excitability.  

Intrinsic plasticity has been reported for various systems to play an important role in 
maintain the system homeostasis [16]. Furthermore, previous studies have shown that IP is 
closely related to learning in behaving animals [15]. In a computational point of view, it has 
been studied that IP maximizes the information transmission of a neuron under the metabolic 
constrains [17]. Therefore, IP plays an important role in achieving ICA-like learning in brain.  

 

 



2 .2 .2  M a thema t ica l  mo de l  o f  in t r ins i c  p la s t i c i ty  

As discussed in the previous section, intrinsic plasticity changes the firing rate of the neuron. 
The mathematical model of the firing rate of the neuron is defined as:  

                  
     

  

   

In this model,    is total postsynaptic potential, and       is the firing rate of the 
postsynaptic neuron.      , and    are three parameters determining the intrinsic 
excitability of a neuron.    represents the threshold voltage; when the membrane potential 
is below   , the firing rate goes to 0. Above     the firing rate increase linearly with the 
membrane potential with the slope        

Intrinsic plasticity changes the neuron’s intrinsic excitability by adjusting three parameters 
     , and   . Figure 3 shows the change in the firing rate when three parameters are 
tweaked. In figure 3, default case is depicted in blue. Green is the case where    is increased 
by a factor of 1.5, red is the case where    is increased by 5 mV, and purple is the case 
where    is increased by a factor of 1.2. This figure shows that    gives the slope of the 
curve,    shifts the entire curve left or right, and    rescales the membrane potential axis. 

 

 

Figure 3: Intrinsic plasticity [14] 

How does the intrinsic plasticity change the intrinsic excitability? What are the updating 
rules for the three parameters? Joshi and Triesch studied the mathematical update rule of the 
intrinsic plasticity [18]. As in classic ICA algorithm, brain attempts to maximize the mutual 
information between input and output distribution of a neuron, because the sensory 
information should be encoded by a limited number of responses for a fixed energy budget. 
Information theory argues that exponential distribution of firing rate can achieve the 
maximum mutual information because the exponential distribution has the maximum entropy 
for a fixed mean. In fact, biological evidence has been reported that the neurons in the visual 
cortex of cats and macaques respond with an approximately exponential distribution of firing 
rates in response to stimulation with natural videos. From the mathematical argument of 
information theory and biological evidence, it has been proposed that the one of the goals of 
intrinsic plasticity (IP) might be to obtain such an exponential distribution of firing-rate [18]. 
Based on this argument, learning rules for the three parameters      , and   were derived 
by minimizing the Kullback-Liebler divergence (KLD) between the output distribution and a 
desired exponential distribution (figure 4).  

 

 

Figure 4: Learning rules for the IP 



2.3  Spike-timing dependent plasticity (STDP) 

2 .3 .1  B io log ica l  mea ni ng  o f  STDP  

According to the Hebbian rules, synaptic efficiency is increased when the synapses 
persistently causes the postsynaptic neurons to generate action potentials. A simpler phrase 
can explain Hebbian rule as following: “those who fire together, wire together”.  With the 
technical development, spike timing of neurons were studied more precisely, and it turned 
out that synaptic strength was strengthened when the presynaptic neuron fires shortly before 
the postsynaptic neuron. Spike-time dependent plasticity refers to such biological process 
that alters the synaptic strength between neurons in response to the relative timing of 
presynaptic and postsynaptic action potentials. Since both Hebbian rule and STDP increases 
the efficiency of synapses in transferring the information, they are also closely linked to 
ICA-like learning in brain.  

 

2 .3 .2  M a thema t ica l  mo de l  o f  STDP  

STDP rule can be implemented when the input and output are spike-based. Yet, for simplicity, 
classic Hebbian learning rule was used:              . Here,    is the synaptic weight 
between  th presynaptic neuron and a postsynaptic neuron,   is synaptic learning rate,     
is the membrane potential of  th presynaptic neuron, and       is the firing rate of the 
postsynaptic neuron for the postsynaptic potential     
 

2.4  Synaptic scaling 

Biologically, synaptic scaling mechanism multiplicatively scales the synaptic weights to 
preserve the average input drive received by the neuron [19]. This mechanism allows single 
neurons to regulate the overall action potential firing rate by normalizing the synaptic 
strengths of all neurons in a network. Without the homeostatic feedback loop, persisting 
correlated neural activity continues up regulating the synaptic strengths. Then at some point, 
insignificant perturbation can trigger chaotic synchronous network-side firing which leads to 
the unstable neural activity. Therefore, synaptic scaling mechanism is required to 
homeostatically regulate firing rate. Synaptic weights were normalized by dividing each 

weight by 
     

      
, so the total weight was maintained.  

 

2 .5   Ex per i me nt  se tup:  S i mp le  de mixi ng  pro ble m  

For our project, a simple neuronal model based on the biologically plausible fashion was 
used to solve a classic ICA problem: simple demixing problem to separate two mixed signals 
in independent source signals. To achieve this problem, we used a simple neuronal model 
with two presynaptic neurons connected to one postsynaptic neuron (figure 5).  

For the classic ICA problem, we generated two source signals    and     Then we mixed 
two signals by taking the linear superposition using the rotation matrix A.  

 

Mixed signals     and     are the inputs to the neuronal system. Membrane potential of the 
presynaptic neurons are     and    , respectively. Membrane potential of the postsynaptic 

neuron is        
      

 , and the firing rate of the postsynaptic neuron is       

            
     

  
  .               and    were updated using the update rules discusses 

in the previous section. Following parameters were used:  
  

       ,  
   

       ,   

   ,       ,      . Weights and parameters for the intrinsic plasticity were initialized 
as following:       ,       ,       ,       ,         . 

 



 

Figure 5 Experiment setup for simple demixing problem 

 

3 Results  

3 .1  Cla ss i c  de mix ing  pro b le m  

3 .1 .1  Independent  La p la c ia n  d i s t r ibuted  i np ut  a nd  s inu so ida l  w a ve  input  

For the source signal, independent Laplacian distributed input and sinusoidal wave input 
were used.    was randomly generated from the Laplacian distribution with unit variance: 

   
     

 

  
         , and     was generated as sinusoidal wave. Two signals were mixed 

with the rotation matrix with   
 

 
. Source signal and mixed signal are shown in figure 6.  

 

 

Figure 6: Source signal and mixed signal 

Three parameters          were updated by intrinsic plasticity and weight vector       
were updated by STDP and synaptic scaling (figure 7). After training for the       samples, 
parameters were stabilized. The distribution of the firing rate of the postsynaptic neuron 
became close to the exponential distribution.  

 

 

Figure 7: The evolution of three intrinsic parameters           , weight vector 
      ] and firing rate of the postsynaptic neuron,  .  



More interestingly, final weight vector aligns itself along the direction of the mixed signals. 
Therefore, rotation angle   was identified by the updated weights, and we can demix our 
signals using the demixing matrix,    .  

 

 

Figure 8: Distribution of mixed signals and final vector aligned  

Figure 9 shows the source, mixed, and demixed signals for various rotational angles 
 

 
 
 

 
 
  

 
  

and 
  

 
  As shown in the results, our neuronal model based on the biological plasticity 

successfully demixed the signal, and thus achieved the ICA-like learning.  

 

 

Figure 9: Independent Laplacian distributed input and sinusoidal wave input. Source, 

mixed, and demixed signals for various rotational angles 
 

 
 
 

 
 
  

 
  and 

  

 
  

 

3 .1 .2  Independent  La p la c ia n  d i s t r ibuted  i np ut  a nd  squa re  w a v e  input  

We tried different types of inputs using Laplacian distributed input and square wave input. 
Though the performance of demixing was not as great as the sinusoidal wave input, the 
demixing was still good enough (figure 10). Later in the next section, we modified our 
learning rules to improve the accuracy.  

 



 

Figure 10: Independent Laplacian distributed input and square wave input. Source, 

mixed, and demixed signals for various rotational angles 
 

 
 
 

 
 
  

 
  and 

  

 
  

 

3 . 1 .3  Squa re  wa v e  a nd s inu so ida l  w a v e  input s  

Similarly, square wave and sinusoidal wave inputs were used, and our model successfully 
demixed the signals again (figure 11).  

 

 

Figure 11: Square wave and sinusoidal wave input. Source, mixed, and demixed 

signals for various rotational angles 
 

 
 
 

 
 
  

 
  and 

  

 
  

 

3 . 2  Ef f ec t  o f  p la s t i c i ty  in  neuro n  mo de l  

Here, we further investigate the effects of three types of plasticity in the neuron model, i.e. IP, 
synaptic scaling and IP, on learning. The same experiment of solving classic demixing 
problem is used. We measure learning quality as the final weights the model learned. 



3 .2 .1  Intr ins ic  p la s t i c i ty  

First of all, we evaluate the effects of intrinsic plasticity (IP) in the neuron model, which 
includes three parameters, r0, u0, and u , and corresponding update rules as shown in figure 4. 
We compare five different cases: full neuron model (as in 3.1), constant r0 model, constant u0 
model, constant u  model, and all constant model. For example, constant r0 model means the 
r0 update rule is ignored and r0 is only a constant during learning. Also, in the experiments we 
use square wave and a Laplacian distributed input as two independent inputs. Same rotation 
matrix and mixing process is performed. The demixing outputs are shown in figure 12. 

 

 

A B  

 

C D E  

Figure 12. Full neuron model vs. simplified IP model 

 

 

A  B  

Figure 13. Full neuron model and all constant IP model with sinusoidal input  

In figure 12, simplified IP models shown in B, D and E are unable to separate the two 
sources, which means u0 and u  update rules are essential for the learning. It’s not surprising 
because u0 and u  are related to spiking threshold properties. It is to be noted that constant u0 

model is even worse than all constant model, which contradicts to our knowledge. By 
performing the experiment several times with different initial conditions, we found that the 
effect changes each time. Hence it’s probably due to initial conditions 

Interestingly, in figure 12C, we found that constant r0 model perform well in separating 
square wave and Laplacian distributed input. By giving different initial conditions of r0, the 
results change accordingly. Therefore by choosing a proper value for r0, the r0 update rule can 
be ignored without losing much learning ability. 

However, if we take a look at how simplified IP models work for demixing sinusoidal and 
Laplace distributed random number, as in figure 13, we found that, surprisingly, even the all 
constant model is able to separate the two sources. Other simplified IP models have the 
similar results which are not shown here. The results suggest that the neuron model can learn 
to demix simple sources like sinusoidal wave without IP properties. In other words, by STDP 
and synaptic scaling characteristics, the neuron model is able to perform basic learning. 

Full neuron model All constant model 

Constant r0 model Constant u0 model Constant u model 

Full neuron model All constant model 



3 .2 .2  Sy na pt ic  Sca l ing  

Next, we move on to the effects of synaptic scaling in the neuron model on learning. The 

non-scaled model does not take the synaptic scaling process into account. Similar to the 

experiment setup described in 3.2.1, we test the full neuron model and non-scaled model with 

three different combinations of sources. The results are shown in figure 14. 

 

 

A D  

B E  

C F  

Figure 14: Full neuron model vs. non-scaled model 

In figure 14 D-F, we observe that all the three combinations of two sources have worse 
results in non-scaled model. Unlike the all constant model described in section 3.2.1, the 
neuron model lack of synaptic scaling property loses the learning ability even to demix 
simple sinusoidal signals. Biologically, synaptic scaling represents neurons have to preserve 
the average input drive received. Hence synaptic scaling plasticity is essential for learning in 
the neuron model.  

 

3 .2 .3  Sp i ke - t i mi ng  depen de nt  p la s t i c i ty  (STDP)  

Finally, we evaluate the effects of STDP in the neuron model. Original neuron model 
considers STDP weight updating rule        

       , which corresponds to one of 

Hebbian learning rules, 
    

  
       . Hence we test STDP characteristic by choosing 

different Hebbian learning rules. Figure 15 shows the Hebbian learning rules and results. 

 

Full neuron model Non-scaled model 



                

A  B  

              

C  D  

Figure 15: STDP models for different Hebbian learning rules 

Compared to the result of original neuron model shown in figure 15 A, the results of Hebbian 
learning rules in B and C are slightly worse. On the other hand, the learning rule in D 
performs even a better job than the original STDP rule in the task of separating square wave 
and random inputs. However, if we use different initial conditions or inputs, the results 
would change dramatically. That is, four Hebbian learning rules have different performances 
under various conditions. Hence, one can choose the best STDP learning rule which fits in 
the experiment setup.  

 

4 Conclusion 

In the report, we investigate how the plasticity in the neuron model implements ICA-like 
learning in both theoretical and experimental perspectives. The model considers three types 
of plasticity: STDP, IP, and synaptic scaling. The corresponding update rules are derived 
based on the concept of maximizing information transmission and achieving exponentially 
distributed firing rate. The neuron model is tested by solving classic demixing problem. The 
results show that all three plasticity play important but different roles in ICA-like learning. 
IP can be simplified under specific initial conditions, while synaptic scaling property is 
essential for learning. STDP alters the performance of learning and should be carefully 
chosen to optimize the learning result. The neuron model provides a biological perspective 
that can potentially explain how our brains learn and why our brains have such high capacity 
and complexity. 
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