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Abstract 6 

Because of its energy efficiency and biological plausibility, spiking neural network is getting 7 
more and more attention recently, especially in the fields of neuromorphic engineering. 8 
Although several researchers have proved the feasibility of spiking neural networks in machine 9 
learning fields, we present a more biologically plausible network. In this project, we 10 
demonstrate the viability of Spiking-Time Dependent Plasticity of Spiking Neural Networks in 11 
unsupervised machine learning fields by digit recognition. With 100 excitatory neurons, we 12 
obtained an accuracy of 80%. 13 

14 

1 Introduction 15 

It has long been a task facing researchers to construct computational programs that could 16 
achieve learning and pattern recognition like humans. Pattern recognition can be as simple as 17 
distinguishing handwritten digits and letters, or as difficult as distinguishing human voices. 18 
These topics are highlighted in machine learning. Researchers attempt to solve these problems 19 
with artificial neural networks (ANN). An artificial neural network can be simply described 20 
as a structure that resembles human brains with different layers of processing units that process 21 
input information and output towards the next layer. Previously these artificial neural networks 22 
are only similar to biological neural networks in structure but not in function because 23 
biological neural networks process information as spiking events in current, which is difficult 24 
to simulate without powerful computers. In recent years, along with fast development of 25 
supercomputers, researchers are able to construct artificial neural networks that are similar to 26 
biological neural networks not only in structure but also in function. Among these approaches, 27 
spiking neural network (SNN) is an increasing popular field. [1] SNN is different from older 28 
ANNs in that it takes time into account by processing inputs as spike trains, which provides 29 
SNN temporal resolution; SNN is also energy-conservative in that the neurons in SNN only 30 
fire when spike trains input into them and these units require no computational resources while 31 
there are no spiking events. [2] 32 

One of the basic learning functions in human brains is spiking-timing-dependent plasticity 33 
(STDP). In STDP, a general rule is that the weight variables describing how information 34 
should be processed towards the next layer can be modified by the difference in time between 35 
the spiking events of the pre- and post- layers. Whether the time difference is positive or 36 
negative determines which function the weight change should follow. If input spiking event 37 
occurs immediately before the output spiking event, the weight of this processing unit will be 38 
made stronger; vice versa. Combining STDP and other network behaviors such as lateral 39 
inhibition turns out to be effective in digit recognition. [3] 40 

A commonly used database for training artificial neural networks to recognize handwritten 41 
digits is MNIST. [4] This database consists of 60000 pictures for training and 10000 pictures 42 
for testing; each picture has 28 by 28 pixels with pixel intensities ranging from 0 to 255. In 43 



this project, the goal is to construct a program that can train under the training pictures and 44 
recognize digits from testing data. Since supervised learning is well investigated in SNNs, 45 
unsupervised learning is used in this project, which doesn’t specify the categories of the 46 
patterns so that the patterns learned by the network are not necessarily ordered up with digits 47 
0 to 9.  48 

In the next section, the models used for neurons and synapses, as well as the network structure 49 
are introduced. Moreover, the detailed procedures of different processes are introduced in the 50 
next section. In section 3, we show our training results and some discussions on our network. 51 

 52 

Figure 1: Data flow in SNN as spike trains. x1 and x2 are presynaptic neurons that output spike 53 
trains towards the synapses, whose functions are indicated by F (g, t). After processing 54 
the spike trains, sum of different synaptic outputs is inputted into soma, towards 55 
postsynaptic neurons.  56 

 57 
2 Method 58 

To simulate SNNs, Python-based simulator BRIAN2 is used to create the network. 59 

 60 
2 .1  N e uro n a nd s y na ps e  mo de l  61 

To model individual neurons in the real world, we chose the Leaky Integrate-and-Fire (IAF) 62 
model. The reason why Hodgkin-Huxley is not chosen mainly because it is more complicated 63 
than the IAF model, and IAF model can already well describe the membrane potential of 64 
individual neurons. Specifically, the membrane voltage V is described as [5] 65 
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where ݃௬  is the leak conductance, ܧ௦௧  is the resting potential, ݃௫௧௧௬  is the excitatory 66 
conductance, ݃௧௬ is the inhibitory conductance, ܧ௩௦  is the inhibitory reversal potential, 67 
௫௧ܫ  is the external current, ܥ  is the membrane capacitance. Also, the inhibitory and 68 
excitatory conductance are calculated as: 69 



 ݀݃௫௧௧௬/݀ݐ = −݃௫௧௧௬/߬௫௧௧௬ (2) 

 ݀݃௧௬ /݀ݐ = − ݃௧௬ /߬௧௬ (3) 

where ߬௫௧௧௬ is the excitatory synaptic time constant, and ߬௧௬ is the inhibitory synaptic 70 
time constant.  71 

 72 
2 .2  S TD P mo de l  73 

In neuroscience, STDP is characterized as  74 
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However, in Brian2, a different function is employed to increase the efficiency of the program. ܽ  75 
and ܽ௦௧ are used as “traces” of pre- and post-synaptic activity, and can be described as: 76 
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ܽ௦௧ =  −ܽ௦௧  (6) 

Therefore, when a presynaptic spike occurs: 77 

 ܽ = ܽ + ܣ  (7) 

ݓ  = ݓ + ܽ௦௧ ∗   (8)ߛ

When a postsynaptic spike occurs: 78 

 ܽ௦௧ = ܽ௦௧ + ௦௧ܣ  (9) 

ݓ  = ݓ + ܽ ∗ ߛ  (10) 

where ߛ is the learning rate, and w is the synaptic weight. The synaptic weight is also limited 79 
within the range between 0 and wmax, which is the maximum synaptic weight defined by users. By 80 
implementing and comparing with original STDP function in BRIAN2, this function is proved to 81 
have a similar effect but faster speed than the original STDP function.  82 

 83 
2 .3  N e tw o rk  s tr uc t ure  84 

A three-layer spiking neural network as shown in Figure 2 is created for digit recognition task. The 85 
first layer is the photoreceptor layer, which has one-to-one connection with pixels and takes inputs 86 
from the intensity of each pixel from figures. Then, neurons from this layer fire with the Poisson 87 
pattern, the frequency of which is related to the intensity of the corresponding pixel. Since BRIAN2 88 
keeps the neuron away from high-intensity firing, the highest frequency of Poisson stimulation is 89 
limited to be 64Hz, which is 1/4 of 255, the saturation intensity in MNIST datasets.  90 

The second layer is a layer of excitatory neurons. The number of neurons is defined by users. 91 
However, the more neurons in this layer, the better prediction the final network will have. Each 92 
excitatory neuron receives spikes from all neurons from the first layer. The connections between the 93 
first two layers are determined by STDP rules. The initial synaptic weights are randomly assigned 94 
from 0 to 1 to ensure the difference between different neurons, otherwise all synapses will eventually 95 
have same weights. 96 

The third layer is a layer of inhibitory neurons. The number of neurons in this layer is equal to the 97 
number of excitatory neurons in the second layer. The second layer sends excitatory signals to the 98 
third layer in a one-to-one connection. Then, each inhibitory neuron in the third layer inhibits all 99 
neurons in the second layer except the one it receives the signal from. This lateral inhibit can 100 
introduce competence between excitatory neurons in the second layer, and can, thus, increase the 101 
difference in synaptic weights.  102 

 103 



Figure 2:  Network structure. The pixel intensity vector is used as the frequency for the first layer 104 
to generate Poisson spike trains. Each excitatory neurons in the second layer receives 105 
excitatory signals from all of neurons in the first layer, and the synaptic weights vary 106 
based on STDP rules. The second layer then send excitatory signals to the third layer of 107 
inhibitory neurons based on a one-to-one connection. The inhibitory neuron then send 108 
inhibitory signals in a one-to-all connection to the second layer.  109 

 110 

2 .4  Le a rn i ng  proc e ss  111 

The learning process is an unsupervised learning process, in which the training group MNIST 112 
dataset is presented to the neural network in training process. After training process, neurons are 113 
labeled with different numbers. During test progress, test group of MNIST dataset and its label 114 
group are used to verify the prediction of the neural group. 115 

 116 
2 .4 . 1 Tr a i n i ng  pro ces s  117 

During training process, the training group of MNIST dataset is shown to the neural network without 118 
labels. Each figure is presented to the network for 500ms. Prior to the whole process, the intensity 119 
of all pixels in each figure, which is a 28*28 matrix, is converted to a 1-D vector. Then, the pixel 120 
intensity of all figures is combined to a single vector with the length of 28*28*60000. The reason 121 
why intensity is converted in such way is because BRAIN2 does not allow the mixture of new 122 
network and the networks that are already simulated, meaning that between different figures, it is 123 
impossible to alter the previous Poisson stimulation with a new Poisson stimulation. By combining 124 
the intensity of all figures in a single vector, the program can pick intensity values of one figure 125 
every 500ms.  126 

 127 
2 .4 . 2 La be l i ng  pro ce ss  128 

Since the training process is unsupervised, the cluster obtained from the training process needs to 129 
be labeled in order for human to understand. After training processes, a predefined vector of pixel 130 
intensities of number 0 to 9 in order is input to the network with zero learning rate. During this 131 
process, the firing activity of the network is recorded. Based on to which number it has the highest 132 
firing frequency in response, each neuron is assigned a number. The labeling results is saved for the 133 
future testing process.  134 

 135 
2 .4 . 3 Te s t i ng  proc es s  136 

After training and labeling process, now the neural network is ready to be tested by the testing group 137 
of the MNIST dataset. All figures in testing group are presented to the neural network for 500ms 138 
with zero learning rate. Suring testing process, a similar intensity vector in training process is 139 
constructed for the testing group. For each figure, each neuron fires and vote once for its label. For 140 



example, if a neuron labeled “1” fires once, then label “1” is voted once for this figure. The total 141 
vote number is counted after each figure in order to determine the predicted label for the figure. The 142 
result is saved to determine the performance of the neural network. 143 

 144 

2 .5  M ode l  pa rame t e rs  145 

To have a biologically plausible system, all parameters used in the system are as close to the real 146 
world as possible, as shown in Table 1. The external current is chosen to have neurons right below 147 
the threshold when they are not triggered by the Poisson stimulation. 148 

Table 1. Parameters used for the model 149 

 150 

Parameters Value 

݃௬ 10.0 nS 

 ௦௧ -60 mVܧ

 ௩௦ -80 mVܧ

௫௧ܫ  200 pA 

ܥ  200 pF 

߬௫௧௧௬ 5 ms 

߬௧௬ 10 ms 

 151 

3 Results  and Discussions 152 

Due to the limit of PC resources, we only have the chance to test the training of 100 excitatory 153 
neurons with the training group of the MNIST datasets. As a demonstration, the synaptic weights of 154 
neuron 9 before and after the training process are shown in Figure 3. The weight vector with the 155 
length of 784 is converted back to 28*28 matrix for graphical presentation. From the comparison, it 156 
is clear that after the training process, each neuron can distinguish a certain type of patterns from 157 
the training figures. Neuron 9, for example, shows that the regions that is similar to number “3” 158 
have higher weights than other regions. Therefore, it is very possible that every time number 3 is 159 
presented to the network, neuron 9 will fire actively. In fact, neuron 9 is labeled as “3” in our labeling 160 
process. In terms of accuracy, with 100 excitatory neurons, the network can perform digit 161 
recognition with an accuracy of about 80%.  162 

Figure 2:  Left: synaptic weights between the photoreceptor layer and the neuron 9 before training 163 
process are assigned as random numbers. Right: synaptic weights between the 164 
photoreceptor layer and neuron 9 after training with the training group once for 500ms 165 
each figure. Values are reconstructed from a 784-length vector to a 28*28 matrix.  166 



This value falls in the expected range since according to [3], the accuracy of neural networks with 167 
100 excitatory neurons is approximated as 83%. One possible reason why the accuracy we obtained 168 
is lower is because the parameters we use in the model is more biologically plausible than others. 169 
Although the values we use can well simulate the real-world circumstances, these parameters are 170 
not optimized for machine learning, and, thus, is possible to be harder to converge than the 171 
parameters modified for machine learning purpose.  172 

Several researchers [3, 6, 7] have used a similar network structure as ours. The main difference 173 
between their networks and ours is that our parameters are more biologically plausible, so ours is 174 
more meaningful for clinical or research uses. Especially, [3] designed a similar spiking neural 175 
network and performed digit recognition using STDP rules too. Although they used a biological 176 
neural model, our model further extends their neuron model to include leaky terms and membrane 177 
conductance. Therefore, our design is one of the models that can well simulate biological neural 178 
systems among others’ work. Moreover, another advantage of our network is that the number of 179 
inhibitory neurons is same as the number of excitatory neurons. Therefore, when one neuron is 180 
actively firing, it not only can increase its weights through STPD rules, but also can inhibit other 181 
excitatory neurons through inhibitory neurons. This mechanism introduces the competition between 182 
excitatory neurons in the second layer.  183 

In the future, it would be interesting to further investigate the scalability of our neural network by 184 
employing more excitatory neurons in the second layer. From [3], the accuracy is positively 185 
correlated to the number of excitatory neurons. Therefore, we can expect to have a much more 186 
accurate prediction with more excitatory neurons in our network. In addition, an increase in the 187 
number of layers may also hugely increase the accuracy. Also, a mask layer may also be useful to 188 
further increase the efficiency or the convergence of the network. Another meaningful improvement 189 
would be introducing the stochastic voting mechanism. In our current network, when the neuron 190 
fires, it will vote for its labelled number once. However, it is possible that a neuron actively responds 191 
to multiple numbers. Therefore, a stochastic mechanism can be used to further increase the accuracy. 192 

In conclusion, while well simulate the biological neural network, our artificial spiking neural 193 
network can perform digit recognition using STDP rules with a good accuracy. With the help of 194 
super computer, it is expected that such a neural network can have state-of-the-art performance.  195 
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