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Abstract

Prior language models which rely on word similarity
for smoothing have used clustering alone to estimate
probabilities for word bigrams using a class-based
model. In this paper we describe a radically new
approach which uses support vector regression ma-
chines to directly estimate conditional bigram proba-
bilities without resorting to intermediate class mod-
els. A key part of our method is the projection
of words into a high-dimensional continuous valued
space using word clustering methods.

1 Introduction

Language models [P(W)] are a key component of
modern speech recognition systems and give a mea-
sure of how probable a given sequence of words is a
priori. The language model has other applications
as well including machine translation, handwriting
recognition and OCR. The other major component
in speech recognition systems, the acoustic model
[P(A|W)], estimates the probability of a acoustic
signal having been generated by a given word se-
quence. Using the noisy channel model and Bayes
Rule, these two terms find the most likely word se-
quence given the acoustic data.

W = argmax P(W|A) = argmaz P(A|W)P(W)
w w

The language model is applied one word at time to
predict the next word given all prior words. Ide-
ally, the language model would use the entire history
to make its prediction. However, data sparsity is a
crippling problem for language models. As a result
a Markov assumption is made, so that the model
predicts the next word not on the entire history, but
merely the previous N - 1 words. Real speech recog-
nition systems typically use N = 3 or 4. In this
paper we restrict ourselves to a simpler model (a bi-
gram model), where the next word is predicted solely
based on the previous word(N=2).

P(w;|history) = P(w;|w;—1)

Though the MLE can be computed simply, even a
bigram model suffers from sparse data. For large

vocabularies (V = 100K), there are 10 billion (10!°)
parameters to estimate. Even a small vocabulary
(1K) has 1 million parameters to estimate, necessi-
tating an enormous amount of training data. Word
sequences assigned zero probability are problematic
for a speech recognizer because this prevents the ma-
chines from ever considering those word sequences.
Determining how to estimate unseen word se-
quences is a key problem of language modeling.
Interpolation estimates are commonly used which
combine bigram, unigram and 0-gram probalities to
estimate word sequences (Jelinek, Mercer 1980) .

1
P(w;|history) = M P(w;|wi—1) + Ao P(w;) + Asm

2 Class-Based Language Models

One of shortcoming of the Jelinek-Mercer interpola-
tion model is that it ignores potential information
from similar words. For example, nouns often fol-
low verbs, but only very infrequently do verbs follow
verbs. Person names should occur with the same
classes of verbs, as should common nouns. Tradi-
tional smoothing models neglect this kind of seman-
tic relateness.

People have tried to create models which reflect
this semantic relatedness by building class-based
language models (Brown et al. 1992, Jardino 1994,
Kneser and Ney 1993, Lafferty and Mercer 1993,
Bellegarda et al. 1996). In these models, cluster-
ing methods are applied to build words class from
which class probabilities are estimated.

The bottom-up clustering method proposed by
(Brown et. all 1992) is typical of these methods.
In bottom-up clustering the individual words of the
vocabulary are first assigned to individual classes,
each class containing only one word. In a class-based
language model, the probability is defined as:

P(wi|lwi—1) = P(wi|¢(wi)) P(p(w:)|d(wi-1))

This will be maximized when each word is in its
own class. However the number of classes is too
big in order to be able to estimate the transition
probabilities P(¢g|¢1) reliably. Therefore we must
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Typical use of word clustering :

reduce the number of classes, and we will do so by
merging the classes two at a time in a hierarchical
manner. Every merge results in a loss in the log
likelihood and we will first merge the two classes
among all possible pairs whose merging will lead to
the least reduction in the log likelihood. After each
merge the probability distributions involving the 2
old nodes and the new node should be updated as
well the estimated reductions in log likelihood. This
process in continued until only one class is left.

It can be proven that when changing class mem-
bership only, the change in log likelihood is equal to
the change in mutual information of classes predict-
ing each other, which is:
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Brown et al. (1992) describe an algorithm which per-
forms this greedy search and builds a tree in O(|V|3),
where |V| is the size of the vocabulary. Unfortu-
nately, this computation time restricts use of the
method to small vocabularies.

Once the tree has been built, cuts across the tree
can then be made in order to derive classes for each
word ¢(w) (Figure 1). Now, transition probabili-
ties P(¢o|¢1) and posterior distributions over words
P(w|¢o) can be estimted from training data. Varia-
tions of this model have shown improvements in per-
plexity when interpolated with traditional language
models.

3 How To Pose LM as a Support
Vector Regression Task

Boser et al. (1992) proposed support vector ma-
chines as a method for solving statistical estima-
tion problems which overcome limitations of classical
statistics for parameter estimation on small sample
sizes. SVMs are “large margin” classifiers which find
the optimal hyperplanes which seperates two classes.
This hyperplane can be found given [ vectors z; with
the assigned class y; by finding the saddle point of
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Figure 2: Word clustering used for projection into a
high-dimension space

the Lagrange functional (Vapnik 2000) :

Za, x; - w] — bly;

In SVMs, each input vector x is projected from a
small dimensional space into a much higher dimen-
sional space where the hyperplane will easily seper-
ate the data. The mathematics of the projection and
of the SVM formulation allows for optimizations to
be made using a Kernel function which computes
distance between elements in the high dimensional
space. This transformation using Kernel functions
allows the minimization to be performed efficiently.

Statistical learning theory predicts that since
SVMs take into account both the empirical risk
(Eizl a;i{[z; - w] — bly; — 1}) and the structural risk
(3(w - w)) they should perform well even for small
training sets. This theoretical prediction has been
borne out in the past decade as more people have
begun using SVMs for statistical learning. These
experiments have demonstrated good performance
on a wide variety of machine learning tasks and the
SVMs have exhibited remarkable generalization abil-
ity. The recent success of SVMs make them appeal-
ing candidate to apply to the task of language mod-
eling.

In order to pose the problem of language model-
ing as a support vector machine problem, first the
data needed to be projected into a continuous do-
main. Inspired by past work on class-based language
models, we chose to project words into a continuous
space using the bottom-up word clustering described
in Section 2.

This method builds a tree from word co-occurance
statistics, and then we assign each word a vector
according to the path taken from the top of the tree
to the leaf containing that word, with a -1 for every
left branch taken, and a 1 for every right branch
(Figure 2). By doing this we can construct a vector
for each word, in the Figure, “approve” would be
mapped to the vector [-1,-1] and “John” to [1,1,-1].

As a result of clustering, not all leaves are at the
same depth (i.e the tree is not complete). In order

L(w,b,0) = = -1}



to normalize the vectors, we added 0’s to fill out
vectors which had missing values (i.e. they were at
the lowest possible depth).

The next observation was that class based method
were inappropriate for the task. Ultimately, what is
desired is probability estimates, not word clusters.
As Vapnik (2000) sagely suggests:

When solving a given problem, try to avoid
solving a more general problem as an inter-
mediate step.

With this goal in sight, an obvious way to use Sup-
port Vector Machines presents itself: perform regres-
sion over the continuous space and thereby directly
estimate probabilities. Support Vector Regression
Machines find the hyperplane with the minimal dis-
tance to the training points and the least structural
complexity:

l l
Lw,€%,6) = 3w -w) +0(Fer + 3¢ )

where £t and £~ represent positive and negative er-
ror respectively (for details see Vapnik 2000). In-
stead of regressing over conditional probabilities, we
decided to regress over pointwise Mutual Informa-
tion values. In this context, the MI statistic can be
seen as a measure of how much more likely are you
to see the word y, given that you’ve already seen the
word x compared to the expectation of seeing the
word x a priori.

plzly)
p(z)

This is a reasonable value over which to smooth since
one would expect that semantically similar words
z; and z; would have similar degrees of increased
(or decreased) prediction given a predictor y, while
they might have vastly different prior (and therefore
posterior) probabilities. Once this value is estimated
it can be used to derive the predicted conditional
probability:

MI(z,y) = log

p(zly) = ple)MI(z,y)

4 Experiment 1 : MI estimation

Our experiment was done on the top 1000 most fre-
quent words in the WSJ 87 corpus using bigrams, es-
timating conditional probabilities for each predictor
individually. The tree we got from the bottom-up hi-
erarchical word clustering, described in the previous
section, had a maximum depth of 19, so this resulted
in 19 dimensional vectors (with 0’s padding out vec-
tors with missing values). We used the support vec-
tor regression machine package 'mySVM’ (Riiping
00), which is based on SV M8 (Joachims 1999).

After tuning on the word ’Reagan’, we decided to
use the polynomial kernel (z *y + 1)® with C=1 and
€ = 1, which we tuned on one word ("Reagan’).

Figures 3 - 6 show an example of what the Sup-
port Vector Regression Machine learns for bigrams
(of, X). In the graph, the words have been projected
from a 19-dimensional space (constructed from the
tree projection). The major troughs in the smoothed
MI picture correspond to verb clusters : the first
(words 131 - 143) is (“keep meet reduce raise take
seek go give provide allow receive continue begin”)
and the trough at the end is (“is remains makes
includes means was has isn’t seems wasn’t doesn’t
hasn’t does”). The highest peak (words 65-75) is
composed of pronouns (“her their those these our
my your them us him me”), most of which are poss-
esive pronouns. As can be seen, the conversion of the
Mutual information values into probabilities (Figure
4 to Figure 6) has changed the curve, though not
dramatically. The major peak now is “the”.

The curve generated by the Support Vector Re-
gression Machine shows exactly the kind of general-
ization we hoped for. It has generalized over syntac-
tic class and semantic relatedness to provide more
accurate estimates of mutual information than were
previously available.

Another way to analyze the performance of the
SVRM is to see how the original compares with the
estimate. Figure 7 illustrates the deviation of the
original MI estimate to the estimated MI. As can be
seen from the figure, the SVRM machine has effec-
tively fit the data, picking out an underlying trend
amoung the noise.

5 Experiment 2 : Language
Modeling

To test the estimted mutual information derived in

the above method, we computed the perplexity of a

held-out set of test data. The perplexity is calcu-

lated as !:

PP(W) = 2LPW)

Where LP is the entropy of the data given the
model :

1 n
LP(W) = - ZlogP(wdhistory)
i=1

We tested two models, a bigram model :

czy)—a ;f 0
P — <(y) if c(xy) >
5 (@y) { AP(z)  otherwise

And the case when our estimated Pg(z|y) was in-
terpolated with the bigram.

1From (Jelinek 1997)
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c(z,y)—a

e = { 3 gl

if c(x,y) >0
otherwise

In both of these absolute discounting models, A is
chosen to form a distribution over the space. With
the above definitions, the raw bigram model (Pg)
had a perplexity of 62.48 on the held-out test data
while the estimated model (Pr) has a perplexity of
62.80. Even though there is not a gain from the
use of the estimated MI information, these results in
addition to those described in the previous section
demonstrated that method might be fruitful avenue
of research.

6 Conclusions

In this paper we have presented a radically new
method for using Support Vector Regression Ma-
chines in language modeling. First we demonstrated
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how to project words into a continuous space using
hierarchical clustering techniques. Next, we showed
how to generalize over this space using mutual in-
formation and then how to convert these mutual in-
formation values back into conditional probabilities.
Finally, we gave some initial experimental results of
using these estimates for language modeling.

This “kernel” of an idea opens up a tremendous
amount of future research pathways. First, the
projection method is clearly sub-optimal in that
the space and the kernel functions are oddly con-
structed. Each dimension has a very different level of
importance for the task, so treating them as equiva-
lent is inappropriate. Clearly, some other projection
method could be used before the smoothing step.
One projection method which seems especially suit-
able is Latent Semantic Analysis (Deerwester 1990,
Landauer and Dumias 1997). LSA projects a word
into a high-dimensional space (200+ vectors) where
each dimension has a unique semantic content.
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Designing a support vector machine more suited
to the task of estimating conditional probabilities is
another major line of inquiry. It seems like what is
really desired is to adjust the conditional probabili-
ties so that the mutual information is as smooth as
possible — but this doesn’t necessarily imply that the
conditional probabilities are also as smooth. More-
over, constraints that the sum of the probability over
the entire space must sum to 1 changes the nature
of the smoothing which is appropriate.

Finally, missing data should be trated in a manner
different from their current treatment. Because of
the nature of the regression, values for missing data
is estimated in a form of interpolation from “nearby”
training items. This is not entirely appropriate since
missing values are missing for a reason — they didn’t
occur in the text. If the words are frequent, this
may be significant. For this reason, it might make
senese to treat missing values differently. We have
tried a few experiments with setting missing values
to —log(m), but this did not appear to help.
Ultimately what is needed is a direct reformulation
of the problem so that the problem can be solved
directly.
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