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Gradient Flow Source Separation and Localization
• Introduction

– Spatial diversity in array signal processing
– Directional hearing at sub-wavelength scale

• Broadband Localization and Separation
– From delays to temporal derivatives
– Gradient Flow
– Equivalent static linear ICA problem
– Multipath extension and convolutive ICA

• Performance Analysis
– Scaling properties
– Cramer-Rao bounds
– Differential sensitivity

• Bearing Estimation
– Micropower mixed-signal VLSI implementation
– Experimental GradFlow/ASU acoustic bearing estimation

• Independent Component Analysis
– Micropower mixed-signal VLSI implementation
– Experimental acoustic source separation

• Hearing Aid Implications
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Blind Separation and Beamforming
Localization

• Modeling
– Source signals propagate as traveling waves
– Spatially diverse sensor array receives linear mixtures of time-

delayed sources
– The time delays determine the direction coordinates of the waves

relative to the sensor geometry

• Methods
– Super-resolution techniques estimate the time delays in the 

spectral domain, assuming narrowband sources
– Joint estimation of multiple broadband sources and their time 

delays is possible in an extended ICA framework, but requires 
non-convex optimization leading to unpredictable performance
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Biomechanics of Tympanal Directional Hearing

– Parasitoid fly localizes sound-
emitting target (cricket) by a 
beamforming acoustic sensor 
of dimensions a factor 100 
smaller than the wavelength. 

– Tympanal beamforming organ 
senses acoustic pressure 
gradient, rather than time 
delays, in the incoming wave

Robert, D., Miles, R.N. and Hoy, R.R., 
“Tympanal hearing in the sarcophagid
parasitoid fly Emblemasoma sp.: the 
biomechanics of directional hearing,” J. 
Experimental Biology, v. 202, pp. 1865-
1876, 1999.
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Directional Selectivity in Hearing Aids

www.oticon.com

• Two microphones allow for one null angle in directionality 
pattern

• Adaptive beamforming allows to steer the null to noise source
• Presence of multiple noise sources requires source 

localization and separation with multiple microphones
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Wave Propagation

Traveling wave (e.g., acoustic, sonar, RF, …) in free space:

In the far field limit:
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Temporal Series Expansion
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delay 0th-order 1st-order

2nd-order 3rd-order 4th-order

– Reduces the 
problem of 
identifying time 
delayed source 
mixtures to that of 
separating static 
mixtures of the 
time-differentiated 
sources

– Implies sub-
wavelength 
geometry of the 
sensor array
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Spatial Sensing

Sensor distribution:
e.g., for a planar sensor geometry:

– sensor array: p, q discrete

– distributed sensor: p, q continuous
Source delays:

with:

the direction coordinates of source relative to sensor geometry
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Wave Flow: Spatial and Temporal Gradients

Linear flow:
Sensor signals:

Gradients:

Higher-order flow:
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Miniature Sensor Arrays
Finite-difference gradient approximation on a grid:

e.g., planar array of 4 sensors:
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Gradient Flow Localization
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• Gradient flow bearing resolution is fundamentally independent of
aperture

• Resolution is determined by sensitivity of gradient acquisition
– Mechanical differential coupling (Miles et al.)
– Optical differential coupling (Degertekin)
– Analog VLSI differential coupling
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Gradient Flow Localization and Separation
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• Gradient flow bearing resolution is fundamentally independent of
aperture

• Resolution is determined by sensitivity of gradient acquisition
– Mechanical differential coupling (Miles et al.)
– Optical differential coupling (Degertekin)
– Analog VLSI differential coupling

• Multiple target tracking with independent component analysis (ICA)
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Separation and Localization
Source mixtures are observed with additive sensor noise:

Gradient flow reduces to a static (noisy) mixture problem:

solved by means of linear static ICA
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Gradient Flow Acoustic Separation
Outdoors Environment

– 4 microphones within 5 mm radius 
– 2 male speakers at 0.5 m, lawn surrounded by buildings at 30 m

1cm
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Gradient Flow Acoustic Separation
Indoors Environment

– 4 microphones within 5 mm radius 
– 2 male speakers at 0.5 m, reverberant room of dimensions 3, 4 and 8 m

1cm
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Multipath Wave Propagation

Multipath convolutive wave expansion:

In the far field:
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Multipath Gradient Flow Separation and Localization
Gradient Flow, uniformly sampled above the Nyquist rate:

yields a mixing model of general convolutive form:

with moments of multipath distributions over sensor geometry:
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Scaling Properties
Order k, dimension m:

Maximum separable number of sources Lmax:
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– Assumes full-rank A with 
linearly independent mixture 
combinations

– Depends on the geometry of 
the source direction vectors 
relative to the array

– More sources can be 
separated in the overcomplete
case by using prior 
information on the sources
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Noise Characteristics

Mixing model:

Signal and bearing estimates:

Error covariance:

– Angular directions of the sources (matrix A), besides sensor noise, 
affect the error variance of the estimated sources.

– Determinant of square matrix A measures the volume (area) 
spanned by the direction vectors. When direction vectors are co-
planar (co-linear), error variance becomes singular.  

– For two sources in the plane with angular separation ∆θ, the error 
variance scales as 1/sin2(∆θ).
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Cramer-Rao Lower Bounds on Bearing Estimation
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Cramer-Rao Lower Bounds on Bearing Estimation

– Conventional:
• time delayed 

source
• uncorrelated 

noise
– Gradient:

• spatial gradients 
(ξ10 and ξ01)

• ambient noise is 
highly correlated

• mechanical or 
electrical coupling 
enhances 
differential spatial 
sensitivity 

– Further 
refinements:

• non-Gaussian 
source statistics

• non-stationary 
source dynamics
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Differential Sensitivity

– Cramer-Rao bound on angular 
precision is fundamentally 
independent of aperture.

– The sensor and acquisition design 
challenge is to resolve small signal 
gradients amidst a large common-
mode signal pedestal.

– Differential coupling eliminates the 
common mode component and 
boosts the differential sensitivity by 
a factor C, the ratio of differential to 
common mode signal amplitude 
range.

– Signal to acquisition error power 
ratio S/E is effectively enhanced by 
the differential coupling factor C.

– Mechanical (sensor) and electrical
(amplifier) differential coupling can 
be combined to yield large gain C 
> 1,000.

D
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Adaptive Common-Mode Suppression
Systematic common-mode error in finite-difference gradients:

due to gain mismatch across sensors in the array:

can be eliminated using second order statistics only:

Adaptive LMS calibration:
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Gradient Flow DSP Frontend
Milutin Stanacevic

– 4 miniature microphones
• Knowles IM-3246
• 100mV/Pa sensitivity (w/ internal preamp)
• 100Hz-8kHz audio range
• 0.2mW each

– 2 stereo audio ∆−Σ ADCs
• Cirrus Logic CS5333A
• 24bit, 96kHz
• 11mW active, 0.2mW standby

– Low-power DSP backend
• Texas Instruments TMS320C5204
• 100MIPS peak
• 0.32mW/MIPS

– Benchmark, and prototyping testbed, for 
micropower VLSI miniaturized integration

1in
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Gradient Flow System Diagram

.

Digital 
estimated 
delays

Average, temporal 
derivative and estimated 

spatial gradients

Spatial gradients with 
suppressed       

common-mode

Analog 
inputs

x10x-10

x01

x0-1

• Least Mean Squares (LMS) digital adaptation
– Common mode offset correction for increased sensitivity in the analog 

differentials 
– 3-D bearing direction cosines

• Analog in, digital out (A/D smart sensor)
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CDS Differential Sensing

Switched-capacitor, 
discrete-time analog 
signal processing
– Correlated Double 

Sampling (CDS)
• Offset cancellation 

and 1/f noise 
reduction

– Fully differential
• Clock and supply 

feedthrough 
rejection

+ +
+

+
+ +

+

+[ ]
dt
d - +
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Spatial Gradient Acquisition
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Mixed-Signal LMS Adaptation
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• Two stages
– Common mode compensation
– Delay parameter estimation 

• Sign-sign LMS differential on-line adaptation rule
– Delay parameter estimation :

• Digital storage and update of parameter estimates
– 12-bit counter
– 8-bit multiplying DAC to construct LMS error signal
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Gradient Flow Processor
Stanacevic and Cauwenberghs (2003)

LMS REGISTERS

LMS REGISTERS

MULTIPLYING DAC

MULTIPLYING DAC

ξ00

ξ00

.
ξ10

ξ01

τ10

τ01

• Digital LMS 
adaptive 3-D 
bearing estimation

• Analog 
microphone 
inputs

• Digital bearing 
outputs

• Analog gradient 
outputs

• 8-bit effective 
digital resolution

• 0.5µs at 240Hz 
input

• 3mm x 3mm in 
0.5µm 3M2P CMOS

• 32µW power 
dissipation at 10 
kHz clock
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GradFlow Delay Estimation

Sinewave inputs and spatial gradient Digital output  - estimated delays

• 200 Hz synthetic sine wave input 
signals

• 2 kHz sampling frequency
• Time delay varied from -400µs to 

400µs in 2µs increments 

sin(ω t)

sin(ω t)

sin(ω (t-τ))

sin(ω (t-τ))
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GradFlow/ASU Localization

Acoustic Surveillance Unit
courtesy of Signal Systems 

Corporation

• One directional source in open-field environment
Band-limited (20-300Hz) Gaussian signal presented through 
loudspeaker

• 16cm effective distance between microphones
• 18m distance between loudspeaker and sensor array
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Independent Component Analysis

• The task of blind source separation (BSS) is to separate and 
recover independent sources from mixed sensor observations, 
where both the sources and mixing matrix are unknown. 

A W
s(t)

M NN

x(t) y(t)

Source signals
Sensor 

observations
Reconstructed 
source signals

Mixing matrix Unmixing matrix

• Independent component analysis (ICA) minimizes higher-order 
statistical dependencies between reconstructed signals to 
estimate the unmixing matrix.    
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ICA System Diagram

System block diagram Cell functionality

• Digitally reconfigurable ICA update rule
– Jutten-Herault
– InfoMax
– SOBI

• Digital storage and update of weight coefficients
– 14-bit counter
– 8-bit multiplying DAC to construct output signal
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Example Mixed-Signal ICA Implementation

• Implemented ICA update rule :

– Corresponds to the feed-forward version of the Jutten-Herault
network.

– Implements the ordinary gradient of the InfoMax cost function, 
multiplied by WT.

• For source signals with Laplacian probability density, the 
distribution optimal function f(y) is sign(y), implemented with 
a single comparator.

• The linear term in the output signal in the update rule is 
quantized to two bits.

))((][]1[ TyyfInWnW −+=+ µ
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ICA VLSI Processor
Celik, Stanacevic and Cauwenberghs (2004)

• 3 inputs – sensor 
signals or gradient 
flow signals

• 3 outputs –
estimated sources

• 14-bit digital 
estimates of 
unmixing 
coefficients

• 3mm x 3mm in 
0.5µm CMOS

• 180µW power 
consumption at 
16kHz

W31 W32 W33

W21 W22 W23

W11 W12 W13

S/
H

 O
U

TP
U

T 
BU

FF
ER

S
ICA REGISTERS

MULTIPLYING DAC
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ICA Experimental Results

• Two mixed speech signals 
presented at 16kHz

• InfoMax ICA implemented 
in VLSI

• 30dB separation in this 
case
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Hearing Aid Implications

• Gradient flow method provides estimates of three independent 
acoustic sources along with the cosines of the angles of arrival.

• Directional hearing aids amplify the signals in the front plane 
and suppress the signals in the back plane of the microphone 
array.

• Gradient flow offers more flexibility in choice of the signal that 
will be amplified and presented to the listener. The signal can be 
chosen based on the direction of arrival with respect to 
microphone array or based on the power of the signal. The 
estimation of independent sources leads to adaptive 
suppression of number of noise sources independent of their 
angle of arrival.
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Conclusions
• Wave gradient “flow” converts the problem to that of static ICA,

with unmixing coefficients yielding the direction cosines of the 
sources.

• The technique works for arrays of dimensions smaller than the 
shortest wavelength in the sources.

• Localization and separation performance is independent of 
aperture, provided that differential sensitivity be large enough so 
that ambient interference noise dominates acquisition error 
noise.

• High resolution delay estimation for source localization using 
miniature sensor arrays and blind separation of artificially mixed 
signals with reconfigurable adaptation has been demonstrated.

• System allows integration with sensor array for small, compact, 
battery-operated “smart” sensor applications in surveillance and 
hearing aids.
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