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Model-Free Stochastic Perturbative
Adaptation and Optimization

OUTLINE

Model-Free Learning
- Model Complexity
- Compensation of Analog VLSI Mismatch

Stochastic Parallel Gradient Descent
- Algorithmic Properties
- Mixed-Signal Architecture
- VLSI Implementation

Extensions
- Learning of Continuous-Time Dynamics
- Reinforcement Learning
Model-Free Adaptive Optics
- AdOpt VLSI Controller
- Adaptive Optics “Quality” Metrics
- Applications to Laser Communication and Imaging
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The Analog Computing Paradigm

e Local functions are efficiently implemented with minimal
circuitry, exploiting the physics of the devices.
 Excessive global interconnects are avoided:
— Currents or charges are accumulated along a single wire.
— Voltage is distributed along a single wire.

Pros:
—- Massive Parallellism
- Low Power Dissipation
- Real-Time, Real-World Interface
— Continuous-Time Dynamics
Cons:
- Limited Dynamic Range
- Mismatches and Nonlinearities (WYDINWYG)
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Effect of Implementation Mismatches

INPUTS SYSTEM OUTPUTS
——— - |
{pi}

elp)

REFERENCE

Associative Element:

- Mismatches can be properly compensated by adjusting the
parameters p; accordingly, provided sufficient degrees of
freedom are available to do so.

Adaptive Element:
- Requires precise implementation

- The accuracy of implemented polarity (rather than amplitude) of
parameter update increments Ap, is the performance limiting
factor.
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Example: LMS Rule

A linear perceptron under supervised learning:

(k’—Z Pij X

Kk Kk
g:_;_z Z( target ( K) yl( ))2
k]

with gradient descent:

K ag(k) K K (k
Ap = —_yp x(00. [y e (0 _y )
apij J

reduces to an incremental outer-product update rule, with scalable,
modular implementation in analog VLSI.

ing on Silicon



Incremental Outer-Product Learning in Neural Nets

E

Multi-Layer Perceptron:

Outer-Product Learning Update:

- Hebbian (Hebb, 1949):
- LMS Rule (Widrow-Hoff, 1960):

- Backpropagation (Werbos, Rumelhart, LeCun):




Gradient Descent Learning

Minimize g(p) by iterating:
k k
pi( +1) pi( )

from calculation of the gradient:
o0& 0y| OXm

| m Oy OXm Opi
Implementation Problems:
— Requires an explicit model of the internal network dynamics.

— Sensitive to model mismatches and noise in the implemented
network and learning system.

- Amount of computation typically scales strongly with the
number of parameters.

ing on Silicon



Gradient-Free Approach to Error-Descent Learning

Avoid the model sensitivity of gradient descent, by observing the
parameter dependence of the performance error on the network
directly, rather than calculating gradient information from a pre-
assumed model of the network.

Stochastic Approximation:
— Multi-dimensional Kiefer-Wolfowitz (Kushner & Clark 1978)
— Function Smoothing Global Optimization (Styblinski & Tang 1990)
— Simultaneous Perturbation Stochastic Approximation (Spall 1992)
Hardware-Related Variants:
— Model-Free Distributed Learning (Dembo & Kailath 1990)
- Noise Injection and Correlation (Anderson & Kerns; Kirk & al. 1992-93)
— Stochastic Error Descent (Cauwenberghs 1993)
- Constant Perturbation, Random Sign (Alspector & al. 1993)
- Summed Weight Neuron Perturbation (Flower & Jabri 1993)
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Stochastic Error-Descent Learning

Minimize &(p) by iterating:

from observation of the gradient in the direction of 7w®:
21 = Lg(pt)+nk)) — g(p)—n(0)))

with random uncorrelated binary components of the perturbation

vector m®: ﬂi(k) =+0 ; E(ﬂi(k)ﬂ'j(l)) ~ o2 Gijo

Advantages:
- No explicit model knowledge is required.
— Robust in the presence of noise and model mismatches.
- Computational load is significantly reduced.
- Allows simple, modular, and scalable implementation.
- Convergence properties similar to exact gradient descent.
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Stochastic Perturbative Learning
Cell Architecture

pk+D) = p(k) — ﬂ'g‘(k)n(k)
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Stochastic Perturbative Learning
Circuit Cell
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Charge Pump Characteristics
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Supervised Learning of Recurrent Neural Dynamics

BINARY QUANTIZATION
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UPDATE ACTIVATION AND PROBE MULTIPLEXING
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The Credit Assighment Problem
or How to Learn from Delayed Rewards

INPUTS

ADAPTIVE
CRITIC

- External, discontinuous reinforcement signal r(%).

- Adaptive Ceritics:
» Discrimination Learning (Grossberg, 1975)
» Heuristic Dynamic Programming (Werbos, 1977)
* Reinforcement Learning (Sutton and Barto, 1983)
e TD(A) (Sutton, 1988)
e Q-Learning (Watkins, 1989)
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Reinforcement Learning
(Barto and Sutton, 1983)

Locally tuned, address encoded neurons:
y() € {0,...2"—1} : n-bit address encoding of state space

Y(t) =Y yt) : classifier output

qit)=g 2(t) - adaptive critic
Adaptation of classifier and adaptive critic:
yk(t+1) =yi(t) + a () ex(t) y(t)
qr(t+1) = qr(t) + ST() ex(t)
- eligibilities:
ex(t+tl)=Aex®+(1- A1) @Z(t)

- internal reinforcement:

r=r®+yq®-qt-1)
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Reinforcement Learning Classifier for Binary Control

State Eligibility
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A Biological Adaptive Optics System

zonule
fibers
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Wavefront Distortion and Adaptive Optics

E wavefront

turbulence | corrector wavefront
Sensor

* Imaging  Laser beam
- defocus - beam wander/spread
- motion - Intensity fluctuations
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Adaptive Optics
Conventional Approach

. | Wavefront
&"*55 Sensor [,

Control
System

Deformable
Mirror

- Performs phase conjugation

e assumes intensity is unaffected

- Complex
* requires accurate wavefront phase sensor (Shack-Hartman; Zernike

nonlinear filter; etc.)

e computationally intensive control system

G. Cauwenberghs
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Adaptive Optics
Model-Free Integrated Approach

Wavefront
Incomin g CO].TC ctor
wavefront

Wavefront corrector with
N elements: Uy ,...,U,,...,Uy

- Optimizes a direct measure | of optical performance (“quality metric”)
- No (explicit) model information is required

e any type of quality metric J, wavefront corrector (MEMS, LC, ...)

* no need for wavefront phase sensor
- Tolerates imprecision in the implementation of the updates

» system level precision limited by accuracy of the measured J
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Adaptive Optics Controller Chip

Optimization by Parallel Perturbative Stochastic Gradient Descent

@(u) image

—>

wavefront | performance
corrector | paamipraEa s | metric sensor

J(U)

AdOpt VLSI wavefront controller
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Adaptive Optics Controller Chip

Optimization by Parallel Perturbative Stochastic Gradient Descent

@(u) image
d(u+du) A

i

—>

J(u+du)
™ J(u)

wavefront performance
corrector | R metric sensor

J(u+ou)

AdOpt VLSI wavefront controller
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Adaptive Optics Controller Chip

Optimization by Parallel Perturbative Stochastic Gradient Descent
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AdOpt VLSI wavefront controller
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Parallel Perturbative Stochastic Gradient Descent
Architecture
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Parallel Perturbative Stochastic Gradient Descent
Mixed-Signal Architecture
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Wavefront Controller

VLSI Implementation
Edwards, Cohen, Cauwenberghs, Vorontsov & Carhart (1999)

e Generate Bernoulli distributed {5 u j(k)} AdOpt mixed-mode chip

2.2 mm?, 1.2um CMOS
with ‘5uj(k)‘ = o and sgn (5uj(k)) = 7Z'j(k) =+1
e Controls 19 channels

 Interfaces with LC SLM
e Update u'“" =u'® — 4 (sgn(5J (k) ) ﬂj(k)) or MEMS mirrors

j ]
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Wavefront Controller
Chip-level Characterization

subthreshold (300pA)
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Wavefront Controller

System-level Characterization (LC SLM)

LC phase /
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Wavefront Controller
System-level Characterization (SLM)

Maximized and minimized J(u) 100 times
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Wavefront Controller
System-Level Characterization (MEMS)

Weyrauch, Vorontsov, Bifano, Hammer, Cohen & Cauwenberghs

deformable MEMS micro-mirror strong
with 37 control channels turbulence

- — CCD)|
convection ﬁeater —|— pinhole

function
; +\/ Ej photo-

detector

Response Y

tip-tilt mirror .
P metric J

[,
X

wavefront tip-tilt control
(2 channels)
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Wavefront Controller

System-level Characterization
(over 500 trials)

Histogram Averaged Magnitude Spectrum
CCD images

mems + tlts mems + tilts 50
15|
40}

not adapting "'._'ff'“-‘" + s

nol adapting
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Quality Metrics

Wavefront
Corrector

Horn(1968),

. . v 12
Imaging: Jimage=!||VI(r’t) d°r' Delbruck (1999)

_ Muller et al.(1974)

laser beam Jbeam - F{I(r’t)} Vorontsov et al.(1996)

focusing:

laser comm:; J = bit-error rate
comm
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G. Cauwenberghs

Image Quality Metric Chip

Cohen, Cauwenberghs, Vorontsov & Carhart (2001)
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column decoders

Architecture (3 x 3)
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Image Quality Metric Chip Characterization
Experimental Setup

Data acquisition

Image control

Light source
LCD

{or 35mm slide)

ing on Silicon



Image Quality Metric Chip Characterization
Experimental Results
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Image Quality Metric Chip Characterization
Experimental Results

captured images

e
55

normalized measured IQM
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Beam Variance Metric Chip
Cohen, Cauwenberghs, Vorontsov & Carhart (2001)

BVM =49 BVM =24 BVM =23
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Beam Variance Metric Chip Characterization
Experimental Setup

white light source

L B | (or laser beam)

aperture

CCD camera
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Beam Variance Metric Chip Characterization
Experimental Results
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Beam Variance Metric Chip Characterization
Experimental Results
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Beam Variance Metric Sensor in the Loop
Laser Receiver Setup

MEMS micro-mirror phase corrected
with 37 control channels wavefront

/ I photodetector
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Adopt - ___4 BVM
VLSI system =

pinhole metric
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Beam Variance Metric Sensor in the Loop
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Conclusions

Computational primitives of adaptation and learning are naturally
iImplemented in analog VLSI, and allow to compensate for inaccuracies in
the physical implementation of the system under adaptation.

Care should still be taken to avoid inaccuracies in the implementation of
the adaptive element. Nevertheless, this can easily be achieved by
ensuring the correct polarity, rather than amplitude, of the parameter
update increments.

Adaptation algorithms based on physical observation of the
“performance” gradient in parameter space are better suited for analog
VLSI implementation than algorithms based on a calculated gradient.

Among the most generally applicable learning architectures are those
that operate on reinforcement signals, and those that blindly extract and
classify signals.

Model-free adaptive optics leads to efficient and robust analog
implementation of the control algorithm using a criterion that can be freely
chosen to accommodate different wavefront correctors, and different
Imaging or laser communication applications.
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