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Silicon Kernel Learning “Machines”
OUTLINE

• Introduction
– Kernel Machines and array processing
– Template-based pattern recognition

• Kerneltron
– Support vector machines: learning and generalization
– Modular vision systems
– CID/DRAM internally analog, externally digital array 

processor
– On-line SVM learning

• Applications
– Example: real-time biosonar target identification
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Massively Parallel Array Kernel “Machines”

• “Neuromorphic”
– distributed representation
– local memory and 

adaptation
– sensory interface
– physical computation
– internally analog, externally 

digital

• Scalable
throughput scales linearly 

with silicon area

• Ultra Low-Power
factor 100 to 10,000 less 

energy than CPU or DSP

Example: VLSI Analog-to-digital vector quantizer
(Cauwenberghs and Pedroni, 1997)
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Acoustic Transient Processor (ATP)
with Tim Edwards and Fernando Pineda
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– Models time-frequency tuning of an auditory cortical cell (S. Shamma)
– Programmable template (matched filter) in time and frequency
– Operational primitives: correlate, shift and accumulate
– Algorithmic and architectural simplifications reduce complexity to one 

bit per cell, implemented essentially with a DRAM or SRAM at high 
density...

Fr
eq

ue
nc

y



G. Cauwenberghs 520.776 Learning on Silicon

Acoustic Transient Processor (ATP) Cont’d...
Algorithmic and Architectural Simplifications (1)

– Channel differenced input, and binarized {-1,+1} template values, give essentially 
the same performance as infinite resolution templates.

– Correlate and shift operations commute, implemented with one shift register only.
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Acoustic Transient Processor (ATP) Cont’d...
Algorithmic and Architectural Simplifications (2)

– Binary {-1,+1} template values can be replaced with {0,1} because of normalized 
inputs.

– Correlation operator reduces to a simple one-way (on/off) switching element per 
cell.



G. Cauwenberghs 520.776 Learning on Silicon

Acoustic Transient Processor (ATP) Cont’d...
Algorithmic and Architectural Simplifications (3)

– Channel differencing can be performed in the correlator, rather than at the 
input.  The cost seems like a factor of two in complexity.  Not quite:

– Analog input is positive, simplifying correlation to single-quadrant, 
implemented efficiently with current-mode switching circuitry.

– Shift-and-accumulate is differential.
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Acoustic Transient Processor (ATP)
Memory-Based Circuit Implementation

Shift-and-
Accumulate

Correlation
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Acoustic Transient Processor (ATP)
with Tim Edwards and Fernando Pineda

2.2mm

2.
25

m
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– 2.2mm X 2.2mm in 1.2µm 
CMOS

– 64 time X 16 frequeny bins
– 30 µW power at 5V

“Can” template

“Can” response “Snap” response

calc.

calc. meas.

meas.

correlation
64 time X 16 freq

shift-accumulate
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Generalization and Complexity

– Generalization is the key to supervised learning, for 
classification or regression.

– Statistical Learning Theory offers a principled approach to 
understanding and controlling generalization performance.

• The complexity of the hypothesis class of functions determines 
generalization performance.

• Support vector machines control complexity by maximizing the 
margin of the classified training data.
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Kernel Machines
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Some Valid Kernels
Boser, Guyon and Vapnik, 1992

– Polynomial (Splines etc.)

– Gaussian (Radial Basis Function Networks)

– Sigmoid (Two-Layer Perceptron)
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Trainable Modular Vision Systems: The SVM Approach
Papageorgiou, Oren, Osuna and Poggio, 1998

– Strong mathematical 
foundations in Statistical 
Learning Theory (Vapnik, 
1995)

– The training process selects a 
small fraction of prototype 
support vectors from the data 
set, located at the margin on 
both sides of the 
classification boundary (e.g., 
barely faces vs. barely non-
faces)

SVM classification for 
pedestrian and face 
object detection
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Trainable Modular Vision Systems: The SVM Approach
Papageorgiou, Oren, Osuna and Poggio, 1998

– The number of support 
vectors and their 
dimensions, in relation 
to the available data, 
determine the 
generalization 
performance

– Both training and run-
time performance are 
severely limited by the 
computational 
complexity of 
evaluating kernel 
functions

ROC curve for various 
image representations and 
dimensions
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Scalable Parallel SVM Architecture

– Full parallelism 
yields very large 
computational 
throughput

– Low-rate input 
and output 
encoding 
reduces 
bandwidth of 
the interface 
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The Kerneltron: Support Vector “Machine”
Genov and Cauwenberghs, 2001

512 X 128
CID/DRAM array

128 ADCs

• 512 inputs, 128 support 
vectors

• 3mm X 3mm in 0.5um 
CMOS

• Fully parallel operation 
using “computational 
memories” in hybrid 
DRAM/CCD technology 

• Internally analog, 
externally digital

• Low bit-rate, serial I/O 
interface

• Supports functional 
extensions on SVM 
paradigm
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Mixed-Signal Parallel Pipelined Architecture

– Externally digital processing and interfacing
• Bit-serial input, and bit-parallel storage of matrix elements
• Digital output is obtained by combining quantized partial products
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CID/DRAM Cell and Analog Array Core

All “1” stored All “0” stored

Linearity of parallel analog summation

input, shifted serially

– Internally analog computing
• Computational memory 

integrates DRAM with CID
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Feedthrough and Leakage Compensation
in an extendable multi-chip architecture
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Oversampled Input Coding/QuantizationOversampled Input Coding/Quantization

• Binary support vectors are stored in bit-parallel form
• Digital inputs are oversampled (e.g. unary coded) and presented bit-
serially
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Oversampling ArchitectureOversampling Architecture

– Oversampled 
input coding (e.g. 
unary)

– Delta-sigma 
modulated ADCs 
accumulate and 
quantize row 
outputs for all 
unary bit-planes 
of the input 
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Kerneltron Kerneltron IIII
Genov, Cauwenberghs, Mulliken and Adil, 2002

• 3mm x 3mm chip in 0.5µm 
CMOS
• Contains 256 x 128 cells 
and 128 8-bit delta-sigma 
algorithmic ADCs
• 6.6 GMACS throughput
• 5.9 mW power dissipation
• 8 bit full digital precision 
• Internally analog, externally 
digital
• Modular; expandable  
• Low bit-rate serial I/O
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DeltaDelta--Sigma Algorithmic ADCSigma Algorithmic ADC

resV

resV

shV

shV

osQ

osQ

Residue voltage

S/H voltage

Oversampled digital 
output

8-bit resolution in 
32 cycles
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Signed MultiplySigned Multiply--Accumulate CellAccumulate Cell

All “01” pairs stored

input, shifted serially
“01” pairs “10” pairs

Linearity of parallel 
analog summation in 
XOR CID/DRAM cell 
configuration
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Stochastic ArchitectureStochastic Architecture

- ADC resolution
requirements are 
relaxed by N
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Stochastic ArchitectureStochastic Architecture

- ADC resolution
requirements are 
relaxed by N
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mY Range of           is

reduced by
),( ji

mY
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- Analog addition 
nonlinearity does 
not affect the 
precision of 
computation 
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Stochastic Input EncodingStochastic Input Encoding
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Stochastic Encoding: Image DataStochastic Encoding: Image Data
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Stochastic Encoding: Experimental Results Stochastic Encoding: Experimental Results 

Worst-case mismatch

),( ji
mY
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Sequential On-Line SVM Learning
with Shantanu Chakrabartty and Roman Genov
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Sequential On-Line SVM Learning
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Effects of Sequential On-Line Learning and Finite Resolution

• Matched 
Filter 
Response

testtrain

-1

+1

• Batch 
Training

• Floating-
Point 
Resolution

• On-Line 
Sequential 
Training

• Kerneltron II
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Biosonar Signal Processor and Classifier

– Constant-Q filterbank emulates a simplified cochlear model
– Kerneltron VLSI support vector machine (SVM) emulates a general class of 

neural network topologies for adaptive classification
– Fully programmable, scaleable, expandable architecture
– Efficient parallel implementation with distributed memory

Signal detection
&extraction

Welch SFT
& decimation

Principal component analysis

2-Layer
Neural Network

Feature/aspect fusion

15-150kHz

16 (freq) X 15 (time)

30

6

30 X 22

22 X 6

sonar

240

15-150kHzsonar

32 (freq)

Continuous-Time 
Constant-Q Filterbank

32 (freq) X 32 (time)

Kerneltron
VLSI Classifier

SVM

... 5X128

Digital 
Postprocessor

5 (chips)

Orincon
Hopkins

Kerneltron--- Massively Parallel SVM
Hopkins, 2001

(adjustable)

256 X 128 processors

with Tim Edwards, APL; and Dave Lemonds, Orincon
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Real-Time Biosonar Signal Processor

– Analog continuous-
time input interface 
at sonar speeds 

• 250kHz bandwidth
• 32 frequency 

channels
– Digital 

programmable 
interface

• In-site 
programmable and 
reconfigurable 
analog architecture
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Frontend Analog Signal Processing
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– Continuous-time 
filters

• Custom topology
• Individually 

programmable Q and 
center frequencies

• Linear or log spacing 
on frequency axis

– Energy, envelope or 
phase detection

• Energy, synchronous
• Zero-crossings, 

asynchronous

time (continuous)
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Real-Time LFM2 Frontend Data

training test



G. Cauwenberghs 520.776 Learning on Silicon

LFM2 Kernel Computation

• Inner-product based kernel is used for SVM classification
• PCA is used to enhance features prior to SVM training
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Measured vs. Simulated Performance
LFM2 mines/non-mines classification

– Hardware and 
simulated biosonar
system perform close 
to the Welch STF/NN 
classification 
benchmark.

• Classification 
performance is 
mainly data-limited.

– Hardware runs in real 
time.

• 2msec per ping.
• 50 times faster than 

simulation on a 
1.6GHz Pentium 4.

ROC curve obtained on test set by varying the 
SVM classification threshold 
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System Integration

512 X 128
CID/DRAM array

128 ADCs

PC Interface
• classification output; digital sonar input
• programming and configuration

Analog
Sonar
Input

Frontend
• 32 channels
• 100Hz-200kHz
• Smart A/D

Xilinx FPGA
• I/O and dataflow control
• reconfigurable computing

Kerneltron SVM
• 1010- 1012 MAC/s
• internally analog
• externally digital
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Conclusions

• Parallel charge-mode and current-mode VLSI technology 
offers efficient implementation of high-dimensional kernel 
machines.
– Computational throughput is a factor 100-10,000 higher than 

presently available from a high-end workstation or DSP, owing to 
a fine-grain distributed parallel architecture with bit-level 
integration of memory and processing functions.

– Ultra-low power dissipation and miniature size support real-time 
autonomous operation.

• Applications include unattended adaptive recognition 
systems for vision and audition, such as video/audio 
surveillance and intelligent aids for the visually and 
hearing impaired.


