
BENG 122A Fall 2025 HW #3
Due Friday, October 24 at 11:59pm

Here we again iterate on two of the problems in the previous homework (HW #1 and #2), now studying
the stability of system response, and closing the loop with feedback. As before, you may find it helpful to
use the available MATLAB Simulink tools.

1. [45 pts] We now consider stability of the second-order biosystem of Problem 1 in HW #1 and #2,
driven by input f(t), and with output u(t):

du

dt
= v(t)

dv

dt
= −a v(t)− b sinh(c u(t)) + d f(t)

(a) [20 pts] Prove that this system is stable for any positive values of the system parameters a, b,
c, and d. Hint: show that the system response is bounded for any small-signal perturbation in
the input around any operating point. In particular, analyze the poles of the linearized system
around any operating point f in the input, f(t) = f + f̃(t).

(b) [25 pts] Now consider the dynamics of the system without any damping, when a = 0. Show
that the system is critically stable, with purely imaginary poles. Plot the output u(t) for zero
input f(t) = 0, and for a = 0, b = 1 ms−2, c = 2 m−1, and d = 2 kg−1. Try different initial
conditions in the state variables (initial position u(0) and initial velocity v(0)). What do you
observe, and why?

2. [55 pts]We now return to the model of regulation of glucose metabolism through insulin secretion, as
studied in HW #1 (Problem 3) and HW #2 (Problem 2). Specifically, we consider a simple feedback
control strategy, where the insulin secretion I(t) is directly proportional to the difference1 between
the actual glucose concentrationG(t), and a constant target value T to maintain a healthy metabolic
state:

I(t) = K (G(t)− T ) (1)

whereK is the feedback strength as a control parameter in the closed-loop system. As before, insulin
is well-mixed in the blood volume V and decays due to exiting the blood stream at flow rate Q:

dC

dt
= α I(t)− 1

τ
C(t) (2)

where α = 1/V and τ = V /Q. We further consider a source of glucose J(t) entering the blood-
stream, as input from the digestive system. Unlike insulin, glucose is not excreted by the kidneys so
it recirculates in the vascular system without decay:

dG

dt
= αJ(t)− k C(t)G(t) (3)

where the last term, as before, models the kinetics in glycogenesis (conversion of glucose to glyco-
gen) catalyzed by insulin.

1We ignore the fact that I(t) cannot possibly go negative, for now– we’ll deal with this later!
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(a) [10 pts] Sketch (or print) an equivalent block diagram of the closed-loop system (1)-(3).
(b) [10 pts] Find the steady-state glucose concentration G for the closed-loop system in response

to a steady-state glucose input J . Show that, as the feedback strength K approaches infinity,
the steady-state glucose concentration approaches the control target T .

(c) [20 pts] Analyze the stability of the closed-loop system by linearizing its dynamics for small-
signal variations around the steady-state operating point in the glucose input J(t) ≈ J + J̃(t),
insulin concentration C(t) ≈ C + C̃(t), and glucose concentration G(t) ≈ G+ G̃(t). Specif-
ically, consider the linearized system response G̃(t) to small perturbations J̃(t). Is the closed-
loop system stable? How does the control parameter K affect the dynamics of the system
response?
Hint: Show that the nonlinear ODE (3) transforms into the following LTI form:

dG̃

dt
= α J̃(t)− kG C̃(t)− kC G̃(t) (4)

and use it along with the small-signal versions of (1) and (2) to find the closed-loop transfer
function G̃(s) / J̃(s) and its poles.

(d) [15 pts] Evaluate the response of the closed-loop system (1)-(3) to an initial 10mmol of glucose
in the 5 L blood volume, for a target concentration T = 1mmol/L, and with zero initial insulin
in the bloodstream. As before, α = 0.2 L−1, τ = 1 min, and k = 1 L/smmol. Show the
dynamics in the concentrations of insulinC(t) and glucoseG(t), for two values of the feedback
strength:
i. K = 0.01 L/min; and
ii. K = 0.1 L/min.

Explain what you observe.

2


