BENG 122A Fall 2025 HW #3
Due Friday, October 24 at 11:59pm

Here we again iterate on two of the problems in the previous homework (HW #1 and #2), now studying
the stability of system response, and closing the loop with feedback. As before, you may find it helpful to
use the available MATLAB Simulink tools.

1. [45 pts] We now consider stability of the second-order biosystem of Problem 1 in HW #1 and #2,
driven by input f(t), and with output u(?):

du

- = v

dv .

- = —a v(t) — b sinh(cu(t)) + d f(t)

(a) [20 pts] Prove that this system is stable for any positive values of the system parameters a, b,
¢, and d. Hint: show that the system response is bounded for any small-signal perturbation in
the input around any operating point. In particular, analyze the poles of the linearized system
around any operating point f in the input, f(t) = f + f(t).

(b) [25 pts] Now consider the dynamics of the system without any damping, when a = 0. Show
that the system is critically stable, with purely imaginary poles. Plot the output u(¢) for zero
input f(t) = 0,and fora = 0,0 = 1ms™2, ¢ =2m}, and d = 2 kg~'. Try different initial
conditions in the state variables (initial position «(0) and initial velocity v(0)). What do you
observe, and why?

2. [55 pts] We now return to the model of regulation of glucose metabolism through insulin secretion, as
studied in HW #1 (Problem 3) and HW #2 (Problem 2). Specifically, we consider a simple feedback
control strategy, where the insulin secretion I(¢) is directly proportional to the difference' between
the actual glucose concentration G(t), and a constant target value 7' to maintain a healthy metabolic
state:

I(t) = K (G(t) = T) (1)

where K is the feedback strength as a control parameter in the closed-loop system. As before, insulin
is well-mixed in the blood volume V' and decays due to exiting the blood stream at flow rate Q:
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where « = 1/V and 7 = V /(). We further consider a source of glucose .J(¢) entering the blood-
stream, as input from the digestive system. Unlike insulin, glucose is not excreted by the kidneys so
it recirculates in the vascular system without decay:

dG
— = alJ(t) = kC(t) G 3)

where the last term, as before, models the kinetics in glycogenesis (conversion of glucose to glyco-
gen) catalyzed by insulin.

"'We ignore the fact that I(t) cannot possibly go negative, for now— we’ll deal with this later!



(a) [10 pts] Sketch (or print) an equivalent block diagram of the closed-loop system (1)-(3).

(b) [10 pts] Find the steady-state glucose concentration G for the closed-loop system in response
to a steady-state glucose input .J. Show that, as the feedback strength K approaches infinity,
the steady-state glucose concentration approaches the control target 7'.

(c) [20 pts] Analyze the stability of the closed-loop system by linearizing its dynamics for small-
signal variations around the steady-state operating point in the glucose input J(¢) ~ J + J (1),
insulin concentration C'(t) =~ C + C(t), and glucose concentration G(t) ~ G + G/(t). Specif-
ically, consider the linearized system response G/(t) to small perturbations J(t). Is the closed-
loop system stable? How does the control parameter K affect the dynamics of the system
response?

Hint: Show that the nonlinear ODE (3) transforms into the following LTI form:

dG . . .

o =aJ(t) - kGC(t) — kCG(t) (4)
and use it along with the small-signal versions of (1) and (2) to find the closed-loop transfer
function G(s) / J(s) and its poles.

(d) [15 pts] Evaluate the response of the closed-loop system (1)-(3) to an initial 10 mmol of glucose
in the 5 L blood volume, for a target concentration 7' = 1 mmol/L, and with zero initial insulin
in the bloodstream. As before, « = 0.2 L™', 7 = 1 min, and ¥ = 1 L/smmol. Show the
dynamics in the concentrations of insulin C'(¢) and glucose G(t), for two values of the feedback
strength:

1. K =0.01 L/min; and
1. K = 0.1 L/min.

Explain what you observe.



