
BENG 122A Fall 2025 HW #5
Due Friday, November 14 at 11:59pm

This final homework combines all methods learned in the class, now including Bode design and stability
analysis, and sets the stage for the final project. As before, you may find it helpful to use MATLAB or
Simulink to generate and graph numerical results.

1. [20 pts] In preparation of the final project, we ask that each of you identify one (any!) problem in
bioengineering that calls for a biosystem control solution that you are now able to formulate, applying
the design principles and analysis tools that you have learned in this course. Choose a project title
that defines the scope of your proposed project, and write a brief (one paragraph) description of the
problem statement, approach, and anticipated outcomes. You are welcome (and encouraged!) to
do this with your peers in a group of three (minumum) to five (preferred); if so, list all names of
your group (and it is understood that all members of the group submit the same proposal). If you
don’t yet have a group, you will still have the opportunity to team based on shared interests across
other project proposals from your peers, which will be posted on Canvas. Submit your one-page
(max) proposal, with title, name(s), and description, as part of your homework 5 submission over
Gradescope.

2. [35 pts] Consider a general second-order section biosystem with two poles:

H(s) =
A

s2 + 2ζa s+ a2
(1)

with DC gain A > 0, natural frequency a > 0, and damping coefficient ζ > 0.

(a) [10 pts] Show that the Bode plot of H(jω) has:
i. amplitudeA / a2 (or 20 log10 A−40 log10 a dB) and zero phase at low frequencies ω ≪ a;
ii. amplitudeA / 2ζa2 (or−20 log10 ζ−6 dB offset) and−90o phase at the natural frequency

ω = a; and
iii. amplitude sloping downward by -40 dB per decade and −180o phase at high frequencies

ω ≫ a.
(b) [10 pts] Show that in case of overdamping (ζ > 1) and critical damping (ζ = 1) this is con-

sistent with the Bode plot contributions anticipated for the corresponding two real negative
poles.

(c) [5 pts] Show that in the underdamped case (ζ < 1) the amplitude exhibits resonance, peaking
at the natural frequency, and reaches infinity in the undamped (ζ = 0) case.

(d) [10 pts] Use the Matlab transfer function (tf) model and Bode (bode) tool to graph the Bode
plot of the transfer function H(s) = ũ(s) / f̃(s) in HW #4 Problem 1. Verify, on the graph,
that the above observations are correct.

3. [45 pts] Finally, we reconsider the closed-loop feedback proportional-integral-derivative (PID) con-
trol for regulation of glucose metabolism through insulin1 secretion, as studied in HW #1 through
HW #4 (Problem 2), but now through Fourier frequency analysis and Bode design of the open-loop

1Or, more generally, complementary insulin and glucagon secretion for down and up regulation of glucose as in HW #4.
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system frequency response OL(jω) = PID(jω)Meas(jω)Bio(jω) for stability of the closed-loop
system response CL(jω) = OL(jω) / (1+OL(jω)). Remember for each of these transfer functions
that they are identical in the Laplace domain and in the Fourier domain, simply substituting s = jω.
As in the previous homework, for small variations (Ĩ , C̃, G̃, G̃meas, and T̃ ) in the signals (I , C, G,
Gmeas, and T ) around their steady-state values (I , C, G, Gmeas, and T ) these are:

Insulin-glucose biosystem: Bio(s) def
=

G̃(s)

Ĩ(s)
= − αkG

(s+ 1
τ
) (s+ kC)

(2)

Glucose measurement system: Meas(s) def
=

G̃meas(s)

G̃(s)
=

1

1 + τmeas s
(3)

PID control system: PID(s) def
=

Ĩ(s)

T̃ (s)− G̃meas(s)
= −Kd s

2 +Kp s+Ki

s
(4)

where we further make the simplifying observation that the system operates at zero steady-state
insulin concentration C = 0 and at target steady-state glucose concentration G = Gmeas = T , since
I = 0. As before, T = 1 mmol/L, α = 0.2 L−1, τ = 1 min, k = 1 L/smmol, and τmeas = 2 min.

(a) [10 pts] Find the poles and the zeros of the open-loop system OL(s), for purely proportional
control with Kp = 0.01 L/min. Sketch (or graph) the Bode plot for the open-loop system
frequency response OL(jω), and find its phase margin. What does this phase margin predict
about the stability of the closed-loop system? Check the consistency of this prediction with
what you observed for the transient simulation in HW #4 Problem 2 (b) i.

(b) [10 pts] Repeat the above in (a), but now with additional derivative controlKd = 5 L, keeping
proportional control atKp = 0.01 L/min. Again, predict the stability of the closed-loop system
from the phase margin, and check the consistency of this prediction with your observations in
HW #4 Problem 2 (b) ii.

(c) [10 pts] Repeat again, but now adding integral control with Ki = 0.01 L/min2 while keeping
Kp = 0.01 L/min and Kd = 5 L for full PID control, and checking the consistency of the
stability predicted from the phase margin with your observations in HW #4 Problem 2 (b) iii.

(d) [15 pts] Finally, we design an optimal PID controller to give the closed-loop system a stable
response with highest possible accuracy and bandwidth, by determining the PID coefficients
to give the open-loop system a phase margin of (approximately) 45 degrees. Explain the role
of the two zeros in this optimal PID controller to cancel select poles in the biosystem and
measurement system. For these ideal PID parameters, graph the Bode plot to verify the phase
margin, and rerun your transient simulation in HW #4 Problem 2 (b) to verify the stability,
accuracy, and bandwidth of the closed-loop system.

Reaching this milestone, you’re now experts in biosystem control design! On to your final projects!
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