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Amplitude
(Gain)

Phase

Transfer function
(complex)

Bode plot: log amplitude & phase vs log (radial) frequency:

Constant c:1.

Zero (s + a):2.

Pole 1 / (s + a):3.

PHASE (o):

GAIN (dB):

Bode plot parameters, directly from the poles and zeros of the transfer function:

Same as ZERO @ s = -a, except for sign reversal both in log amplitude and phase:

The Bode plot can be constructed by summing individual contributions for the constant, 
for each zero, and for each pole. 

Real!  Thus, either  positive or negative:

The constant contributes a flat response both in log amplitude and in phase.

To first order, each zero (@ s = -a) contributes a 20 dB/dec rise in slope of log 
amplitude, and a +90o step in phase, for radial frequencies above the magnitude 
of that zero (w > |a|).

More precisely, for a real negative zero, at the transition (w = a), the log 
amplitude has risen by +3 dB, and the phase has stepped halfway at 45o.

To first order, each pole (@ s = -a) contributes a -20 dB/dec decline in slope of 
log amplitude, and a -90o step down in phase, for radial frequencies above the 
magnitude of that zero (w > |a|).

More precisely, for a real negative pole, at the transition (w = a), the log 
amplitude has fallen by -3 dB, and the phase has stepped halfway at -45o. 

Putting it all together: constructing the Bode plot from individual contributions:

Start from log amplitude and phase (0 or 180o) given by the constant c.1.

Rank order the magnitudes a of all zeros and poles, from lowest 
(possibly zero) to highest.  For each a:

2.

If it is a zero: increase slope of log amplitude by +20 dB/dec, and 
step phase by +90o, for all frequencies above a, with a +3 dB rise 
and 45o midway step at the transition frequency a.

a.

If it is a pole: decrease slope of log amplitude by -20 dB/dec, and 
step phase down by -90o, for all frequencies above a, with a -3 dB 
fall and -45o midway step at the transition frequency a.

b.

If needed, fix indeterminate offset in log amplitude by taking limits of 
the transfer function for zero, infinite, or mid-band frequency where the 
log amplitude slope is flat.

3.

Notes:

The slope of log amplitude, in units 20 dB/dec, is almost always, but only 
approximately, equal to the phase, in units 90o.  It is always good to check 
consistency between the two.

1.

The above assumes all zeros and poles are real and negative.  For pairs of 
complex conjugate zeros (poles) with magnitude a, both contribute for a 
total (-)40dB/dec slope in log amplitude and (-)180o step in phase, with 
(-)90o midway step at resonance frequency a.  Log amplitude at the 
resonance frequency depends on damping, and approaches zero (infinity) 
for zero damping.  Plug in values in the transfer function at resonance to 
find log amplitude at resonance.

2.

Example:

Single zero @ s = 0

Two poles  @ s = -a

Single zero @ 0 contribution

Double pole @ -a
contribution

Double pole @ -a
contribution

Closing the loop: open-loop phase margin for closed-loop stability

closed-loop
transfer function

open-loop
transfer function

target error
output

Single zero @ 0 contribution

controller biosystem (including
measurement)

Amplitudes multiply.
Log amplitudes and phases add.

Open-loop Bode design:

as

for

for

Poles:

Closed-loop stability:

The closed-loop system is unstable and oscillates at any frequency w where:

the open-loop gain is 1 (0 dB) in magnitude, and1)

the open-loop phase is -180o (anti-phase).2)

Phase margin is the degree to which the open-loop phase is higher than -180o

at the frequency w where the open-loop gain is 1 (0 dB) in magnitude.

Conversely, gain margin is the amount (in dB) of attenuation in open-loop 
gain at the frequency where the open-loop phase is -180o.

For zero or negative phase (gain) margin, the closed-loop system is unstable 
exhibiting unbounded or rising oscillations.  The higher the phase (gain) 
margin, the more damped the closed-loop dynamics.  For phase margins 
of -90o and above, the closed-loop dynamics is overdamped, with 
approximately a first-order response with time constant t = 1 / w.

Bode stability analysis and design, e.g.:

Bode design of proportional-integral-derivative (PID) control:

-->  2 zeros @  s = -zF1, -zF2

-->  1 pole   @  s = 0

for

for

for

low frequency

high frequency

midband frequency

Proportional control increases open-loop gain to bring closed-loop gain 
closer to unity for low error at low frequencies, but decreases open-
loop phase margin potentially causing instability with oscillation at high 
frequency.

Integral control further boosts open-loop gain by 20 dB/dec at low 
frequencies to decrease low-frequency closed-loop error.

Derivative control increases open-loop phase margin by 90o at high 
frequencies to improve high-frequency closed-loop dynamics.

zero @ s = -z1
poles @ s = -p1, -p2, -p3
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Amplitude
(Gain)

Phase

Transfer function
(complex)

Bode plot: log amplitude & phase vs log (radial) frequency:

Constant c:1.

Zero (s + a):2.

Pole 1 / (s + a):3.

PHASE (o):

GAIN (dB):

Bode plot parameters, directly from the poles and zeros of the transfer function:

Same as ZERO @ s = -a, except for sign reversal both in log amplitude and phase:

The Bode plot can be constructed by summing individual contributions for the constant, 
for each zero, and for each pole. 

Real!  Thus, either  positive or negative:

The constant contributes a flat response both in log amplitude and in phase.

To first order, each zero (@ s = -a) contributes a 20 dB/dec rise in slope of log 
amplitude, and a +90o step in phase, for radial frequencies above the magnitude 
of that zero (w > |a|).

More precisely, for a real negative zero, at the transition (w = a), the log 
amplitude has risen by +3 dB, and the phase has stepped halfway at 45o.

To first order, each pole (@ s = -a) contributes a -20 dB/dec decline in slope of 
log amplitude, and a -90o step down in phase, for radial frequencies above the 
magnitude of that zero (w > |a|).

More precisely, for a real negative pole, at the transition (w = a), the log 
amplitude has fallen by -3 dB, and the phase has stepped halfway at -45o. 

Putting it all together: constructing the Bode plot from individual contributions:

Start from log amplitude and phase (0 or 180o) given by the constant c.1.

Rank order the magnitudes a of all zeros and poles, from lowest 
(possibly zero) to highest.  For each a:

2.

If it is a zero: increase slope of log amplitude by +20 dB/dec, and 
step phase by +90o, for all frequencies above a, with a +3 dB rise 
and 45o midway step at the transition frequency a.

a.

If it is a pole: decrease slope of log amplitude by -20 dB/dec, and 
step phase down by -90o, for all frequencies above a, with a -3 dB 
fall and -45o midway step at the transition frequency a.

b.

If needed, fix indeterminate offset in log amplitude by taking limits of 
the transfer function for zero, infinite, or mid-band frequency where the 
log amplitude slope is flat.

3.

Notes:

The slope of log amplitude, in units 20 dB/dec, is almost always, but only 
approximately, equal to the phase, in units 90o.  It is always good to check 
consistency between the two.

1.

The above assumes all zeros and poles are real and negative.  For pairs of 
complex conjugate zeros (poles) with magnitude a, both contribute for a 
total (-)40dB/dec slope in log amplitude and (-)180o step in phase, with 
(-)90o midway step at resonance frequency a.  Log amplitude at the 
resonance frequency depends on damping, and approaches zero (infinity) 
for zero damping.  Plug in values in the transfer function at resonance to 
find log amplitude at resonance.

2.

Example:

Single zero @ s = 0

Two poles  @ s = -a

Single zero @ 0 contribution

Double pole @ -a
contribution

Double pole @ -a
contribution

Closing the loop: open-loop phase margin for closed-loop stability

closed-loop
transfer function

open-loop
transfer function

target error
output

Single zero @ 0 contribution

controller biosystem (including
measurement)

Amplitudes multiply.
Log amplitudes and phases add.

Open-loop Bode design:

as

for

for

Poles:

Closed-loop stability:

The closed-loop system is unstable and oscillates at any frequency w where:

the open-loop gain is 1 (0 dB) in magnitude, and1)

the open-loop phase is -180o (anti-phase).2)

Phase margin is the degree to which the open-loop phase is higher than -180o

at the frequency w where the open-loop gain is 1 (0 dB) in magnitude.

Conversely, gain margin is the amount (in dB) of attenuation in open-loop 
gain at the frequency where the open-loop phase is -180o.

For zero or negative phase (gain) margin, the closed-loop system is unstable 
exhibiting unbounded or rising oscillations.  The higher the phase (gain) 
margin, the more damped the closed-loop dynamics.  For phase margins 
of -90o and above, the closed-loop dynamics is overdamped, with 
approximately a first-order response with time constant t = 1 / w.

Bode stability analysis and design, e.g.:

Bode design of proportional-integral-derivative (PID) control:

-->  2 zeros @  s = -zF1, -zF2

-->  1 pole   @  s = 0

for

for

for

low frequency

high frequency

midband frequency

Proportional control increases open-loop gain to bring closed-loop gain 
closer to unity for low error at low frequencies, but decreases open-
loop phase margin potentially causing instability with oscillation at high 
frequency.

Integral control further boosts open-loop gain by 20 dB/dec at low 
frequencies to decrease low-frequency closed-loop error.

Derivative control increases open-loop phase margin by 90o at high 
frequencies to improve high-frequency closed-loop dynamics.

zero @ s = -z1
poles @ s = -p1, -p2, -p3
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Amplitude
(Gain)

Phase

Transfer function
(complex)

Bode plot: log amplitude & phase vs log (radial) frequency:

Constant c:1.

Zero (s + a):2.

Pole 1 / (s + a):3.

PHASE (o):

GAIN (dB):

Bode plot parameters, directly from the poles and zeros of the transfer function:

Same as ZERO @ s = -a, except for sign reversal both in log amplitude and phase:

The Bode plot can be constructed by summing individual contributions for the constant, 
for each zero, and for each pole. 

Real!  Thus, either  positive or negative:

The constant contributes a flat response both in log amplitude and in phase.

To first order, each zero (@ s = -a) contributes a 20 dB/dec rise in slope of log 
amplitude, and a +90o step in phase, for radial frequencies above the magnitude 
of that zero (w > |a|).

More precisely, for a real negative zero, at the transition (w = a), the log 
amplitude has risen by +3 dB, and the phase has stepped halfway at 45o.

To first order, each pole (@ s = -a) contributes a -20 dB/dec decline in slope of 
log amplitude, and a -90o step down in phase, for radial frequencies above the 
magnitude of that zero (w > |a|).

More precisely, for a real negative pole, at the transition (w = a), the log 
amplitude has fallen by -3 dB, and the phase has stepped halfway at -45o. 

Putting it all together: constructing the Bode plot from individual contributions:

Start from log amplitude and phase (0 or 180o) given by the constant c.1.

Rank order the magnitudes a of all zeros and poles, from lowest 
(possibly zero) to highest.  For each a:

2.

If it is a zero: increase slope of log amplitude by +20 dB/dec, and 
step phase by +90o, for all frequencies above a, with a +3 dB rise 
and 45o midway step at the transition frequency a.

a.

If it is a pole: decrease slope of log amplitude by -20 dB/dec, and 
step phase down by -90o, for all frequencies above a, with a -3 dB 
fall and -45o midway step at the transition frequency a.

b.

If needed, fix indeterminate offset in log amplitude by taking limits of 
the transfer function for zero, infinite, or mid-band frequency where the 
log amplitude slope is flat.

3.

Notes:

The slope of log amplitude, in units 20 dB/dec, is almost always, but only 
approximately, equal to the phase, in units 90o.  It is always good to check 
consistency between the two.

1.

The above assumes all zeros and poles are real and negative.  For pairs of 
complex conjugate zeros (poles) with magnitude a, both contribute for a 
total (-)40dB/dec slope in log amplitude and (-)180o step in phase, with 
(-)90o midway step at resonance frequency a.  Log amplitude at the 
resonance frequency depends on damping, and approaches zero (infinity) 
for zero damping.  Plug in values in the transfer function at resonance to 
find log amplitude at resonance.

2.

Example:

Single zero @ s = 0

Two poles  @ s = -a

Single zero @ 0 contribution

Double pole @ -a
contribution

Double pole @ -a
contribution

Closing the loop: open-loop phase margin for closed-loop stability

closed-loop
transfer function

open-loop
transfer function

target error
output

Single zero @ 0 contribution

controller biosystem (including
measurement)

Amplitudes multiply.
Log amplitudes and phases add.

Open-loop Bode design:

as

for

for

Poles:

Closed-loop stability:

The closed-loop system is unstable and oscillates at any frequency w where:

the open-loop gain is 1 (0 dB) in magnitude, and1)

the open-loop phase is -180o (anti-phase).2)

Phase margin is the degree to which the open-loop phase is higher than -180o

at the frequency w where the open-loop gain is 1 (0 dB) in magnitude.

Conversely, gain margin is the amount (in dB) of attenuation in open-loop 
gain at the frequency where the open-loop phase is -180o.

For zero or negative phase (gain) margin, the closed-loop system is unstable 
exhibiting unbounded or rising oscillations.  The higher the phase (gain) 
margin, the more damped the closed-loop dynamics.  For phase margins 
of -90o and above, the closed-loop dynamics is overdamped, with 
approximately a first-order response with time constant t = 1 / w.

Bode stability analysis and design, e.g.:

Bode design of proportional-integral-derivative (PID) control:

-->  2 zeros @  s = -zF1, -zF2

-->  1 pole   @  s = 0

for

for

for

low frequency

high frequency

midband frequency

Proportional control increases open-loop gain to bring closed-loop gain 
closer to unity for low error at low frequencies, but decreases open-
loop phase margin potentially causing instability with oscillation at high 
frequency.

Integral control further boosts open-loop gain by 20 dB/dec at low 
frequencies to decrease low-frequency closed-loop error.

Derivative control increases open-loop phase margin by 90o at high 
frequencies to improve high-frequency closed-loop dynamics.

zero @ s = -z1
poles @ s = -p1, -p2, -p3

Lecture 11: Bode Design and Phase Margin
Thursday, November 12, 2020 8:48 AM



References:

Tranquillo JV. Biomedical Signals and Systems, Morgan & Claypool 
Publishers, Dec. 2013.  Ch. 8 & Ch. 9 (Sec. 8.5, 9.6, 9.7).

Amplitude
(Gain)

Phase

Transfer function
(complex)

Bode plot: log amplitude & phase vs log (radial) frequency:

Constant c:1.

Zero (s + a):2.

Pole 1 / (s + a):3.

PHASE (o):

GAIN (dB):

Bode plot parameters, directly from the poles and zeros of the transfer function:

Same as ZERO @ s = -a, except for sign reversal both in log amplitude and phase:

The Bode plot can be constructed by summing individual contributions for the constant, 
for each zero, and for each pole. 

Real!  Thus, either  positive or negative:

The constant contributes a flat response both in log amplitude and in phase.

To first order, each zero (@ s = -a) contributes a 20 dB/dec rise in slope of log 
amplitude, and a +90o step in phase, for radial frequencies above the magnitude 
of that zero (w > |a|).

More precisely, for a real negative zero, at the transition (w = a), the log 
amplitude has risen by +3 dB, and the phase has stepped halfway at 45o.

To first order, each pole (@ s = -a) contributes a -20 dB/dec decline in slope of 
log amplitude, and a -90o step down in phase, for radial frequencies above the 
magnitude of that zero (w > |a|).

More precisely, for a real negative pole, at the transition (w = a), the log 
amplitude has fallen by -3 dB, and the phase has stepped halfway at -45o. 

Putting it all together: constructing the Bode plot from individual contributions:

Start from log amplitude and phase (0 or 180o) given by the constant c.1.

Rank order the magnitudes a of all zeros and poles, from lowest 
(possibly zero) to highest.  For each a:

2.

If it is a zero: increase slope of log amplitude by +20 dB/dec, and 
step phase by +90o, for all frequencies above a, with a +3 dB rise 
and 45o midway step at the transition frequency a.

a.

If it is a pole: decrease slope of log amplitude by -20 dB/dec, and 
step phase down by -90o, for all frequencies above a, with a -3 dB 
fall and -45o midway step at the transition frequency a.

b.

If needed, fix indeterminate offset in log amplitude by taking limits of 
the transfer function for zero, infinite, or mid-band frequency where the 
log amplitude slope is flat.

3.

Notes:

The slope of log amplitude, in units 20 dB/dec, is almost always, but only 
approximately, equal to the phase, in units 90o.  It is always good to check 
consistency between the two.

1.

The above assumes all zeros and poles are real and negative.  For pairs of 
complex conjugate zeros (poles) with magnitude a, both contribute for a 
total (-)40dB/dec slope in log amplitude and (-)180o step in phase, with 
(-)90o midway step at resonance frequency a.  Log amplitude at the 
resonance frequency depends on damping, and approaches zero (infinity) 
for zero damping.  Plug in values in the transfer function at resonance to 
find log amplitude at resonance.

2.

Example:

Single zero @ s = 0

Two poles  @ s = -a

Single zero @ 0 contribution

Double pole @ -a
contribution

Double pole @ -a
contribution

Closing the loop: open-loop phase margin for closed-loop stability

closed-loop
transfer function

open-loop
transfer function

target error
output

Single zero @ 0 contribution

controller biosystem (including
measurement)

Amplitudes multiply.
Log amplitudes and phases add.

Open-loop Bode design:

as

for

for

Poles:

Closed-loop stability:

The closed-loop system is unstable and oscillates at any frequency w where:

the open-loop gain is 1 (0 dB) in magnitude, and1)

the open-loop phase is -180o (anti-phase).2)

Phase margin is the degree to which the open-loop phase is higher than -180o

at the frequency w where the open-loop gain is 1 (0 dB) in magnitude.

Conversely, gain margin is the amount (in dB) of attenuation in open-loop 
gain at the frequency where the open-loop phase is -180o.

For zero or negative phase (gain) margin, the closed-loop system is unstable 
exhibiting unbounded or rising oscillations.  The higher the phase (gain) 
margin, the more damped the closed-loop dynamics.  For phase margins 
of -90o and above, the closed-loop dynamics is overdamped, with 
approximately a first-order response with time constant t = 1 / w.

Bode stability analysis and design, e.g.:

Bode design of proportional-integral-derivative (PID) control:

-->  2 zeros @  s = -zF1, -zF2

-->  1 pole   @  s = 0

for

for

for

low frequency

high frequency

midband frequency

Proportional control increases open-loop gain to bring closed-loop gain 
closer to unity for low error at low frequencies, but decreases open-
loop phase margin potentially causing instability with oscillation at high 
frequency.

Integral control further boosts open-loop gain by 20 dB/dec at low 
frequencies to decrease low-frequency closed-loop error.

Derivative control increases open-loop phase margin by 90o at high 
frequencies to improve high-frequency closed-loop dynamics.

zero @ s = -z1
poles @ s = -p1, -p2, -p3
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Amplitude
(Gain)

Phase

Transfer function
(complex)

Bode plot: log amplitude & phase vs log (radial) frequency:

Constant c:1.

Zero (s + a):2.

Pole 1 / (s + a):3.

PHASE (o):

GAIN (dB):

Bode plot parameters, directly from the poles and zeros of the transfer function:

Same as ZERO @ s = -a, except for sign reversal both in log amplitude and phase:

The Bode plot can be constructed by summing individual contributions for the constant, 
for each zero, and for each pole. 

Real!  Thus, either  positive or negative:

The constant contributes a flat response both in log amplitude and in phase.

To first order, each zero (@ s = -a) contributes a 20 dB/dec rise in slope of log 
amplitude, and a +90o step in phase, for radial frequencies above the magnitude 
of that zero (w > |a|).

More precisely, for a real negative zero, at the transition (w = a), the log 
amplitude has risen by +3 dB, and the phase has stepped halfway at 45o.

To first order, each pole (@ s = -a) contributes a -20 dB/dec decline in slope of 
log amplitude, and a -90o step down in phase, for radial frequencies above the 
magnitude of that zero (w > |a|).

More precisely, for a real negative pole, at the transition (w = a), the log 
amplitude has fallen by -3 dB, and the phase has stepped halfway at -45o. 

Putting it all together: constructing the Bode plot from individual contributions:

Start from log amplitude and phase (0 or 180o) given by the constant c.1.

Rank order the magnitudes a of all zeros and poles, from lowest 
(possibly zero) to highest.  For each a:

2.

If it is a zero: increase slope of log amplitude by +20 dB/dec, and 
step phase by +90o, for all frequencies above a, with a +3 dB rise 
and 45o midway step at the transition frequency a.

a.

If it is a pole: decrease slope of log amplitude by -20 dB/dec, and 
step phase down by -90o, for all frequencies above a, with a -3 dB 
fall and -45o midway step at the transition frequency a.

b.

If needed, fix indeterminate offset in log amplitude by taking limits of 
the transfer function for zero, infinite, or mid-band frequency where the 
log amplitude slope is flat.

3.

Notes:

The slope of log amplitude, in units 20 dB/dec, is almost always, but only 
approximately, equal to the phase, in units 90o.  It is always good to check 
consistency between the two.

1.

The above assumes all zeros and poles are real and negative.  For pairs of 
complex conjugate zeros (poles) with magnitude a, both contribute for a 
total (-)40dB/dec slope in log amplitude and (-)180o step in phase, with 
(-)90o midway step at resonance frequency a.  Log amplitude at the 
resonance frequency depends on damping, and approaches zero (infinity) 
for zero damping.  Plug in values in the transfer function at resonance to 
find log amplitude at resonance.

2.

Example:

Single zero @ s = 0

Two poles  @ s = -a

Single zero @ 0 contribution

Double pole @ -a
contribution

Double pole @ -a
contribution

Closing the loop: open-loop phase margin for closed-loop stability

closed-loop
transfer function

open-loop
transfer function

target error
output

Single zero @ 0 contribution

controller biosystem (including
measurement)

Amplitudes multiply.
Log amplitudes and phases add.

Open-loop Bode design:

as

for

for

Poles:

Closed-loop stability:

The closed-loop system is unstable and oscillates at any frequency w where:

the open-loop gain is 1 (0 dB) in magnitude, and1)

the open-loop phase is -180o (anti-phase).2)

Phase margin is the degree to which the open-loop phase is higher than -180o

at the frequency w where the open-loop gain is 1 (0 dB) in magnitude.

Conversely, gain margin is the amount (in dB) of attenuation in open-loop 
gain at the frequency where the open-loop phase is -180o.

For zero or negative phase (gain) margin, the closed-loop system is unstable 
exhibiting unbounded or rising oscillations.  The higher the phase (gain) 
margin, the more damped the closed-loop dynamics.  For phase margins 
of -90o and above, the closed-loop dynamics is overdamped, with 
approximately a first-order response with time constant t = 1 / w.

Bode stability analysis and design, e.g.:

Bode design of proportional-integral-derivative (PID) control:

-->  2 zeros @  s = -zF1, -zF2

-->  1 pole   @  s = 0

for

for

for

low frequency

high frequency

midband frequency

Proportional control increases open-loop gain to bring closed-loop gain 
closer to unity for low error at low frequencies, but decreases open-
loop phase margin potentially causing instability with oscillation at high 
frequency.

Integral control further boosts open-loop gain by 20 dB/dec at low 
frequencies to decrease low-frequency closed-loop error.

Derivative control increases open-loop phase margin by 90o at high 
frequencies to improve high-frequency closed-loop dynamics.

zero @ s = -z1
poles @ s = -p1, -p2, -p3
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Amplitude
(Gain)

Phase

Transfer function
(complex)

Bode plot: log amplitude & phase vs log (radial) frequency:

Constant c:1.

Zero (s + a):2.

Pole 1 / (s + a):3.

PHASE (o):

GAIN (dB):

Bode plot parameters, directly from the poles and zeros of the transfer function:

Same as ZERO @ s = -a, except for sign reversal both in log amplitude and phase:

The Bode plot can be constructed by summing individual contributions for the constant, 
for each zero, and for each pole. 

Real!  Thus, either  positive or negative:

The constant contributes a flat response both in log amplitude and in phase.

To first order, each zero (@ s = -a) contributes a 20 dB/dec rise in slope of log 
amplitude, and a +90o step in phase, for radial frequencies above the magnitude 
of that zero (w > |a|).

More precisely, for a real negative zero, at the transition (w = a), the log 
amplitude has risen by +3 dB, and the phase has stepped halfway at 45o.

To first order, each pole (@ s = -a) contributes a -20 dB/dec decline in slope of 
log amplitude, and a -90o step down in phase, for radial frequencies above the 
magnitude of that zero (w > |a|).

More precisely, for a real negative pole, at the transition (w = a), the log 
amplitude has fallen by -3 dB, and the phase has stepped halfway at -45o. 

Putting it all together: constructing the Bode plot from individual contributions:

Start from log amplitude and phase (0 or 180o) given by the constant c.1.

Rank order the magnitudes a of all zeros and poles, from lowest 
(possibly zero) to highest.  For each a:

2.

If it is a zero: increase slope of log amplitude by +20 dB/dec, and 
step phase by +90o, for all frequencies above a, with a +3 dB rise 
and 45o midway step at the transition frequency a.

a.

If it is a pole: decrease slope of log amplitude by -20 dB/dec, and 
step phase down by -90o, for all frequencies above a, with a -3 dB 
fall and -45o midway step at the transition frequency a.

b.

If needed, fix indeterminate offset in log amplitude by taking limits of 
the transfer function for zero, infinite, or mid-band frequency where the 
log amplitude slope is flat.

3.

Notes:

The slope of log amplitude, in units 20 dB/dec, is almost always, but only 
approximately, equal to the phase, in units 90o.  It is always good to check 
consistency between the two.

1.

The above assumes all zeros and poles are real and negative.  For pairs of 
complex conjugate zeros (poles) with magnitude a, both contribute for a 
total (-)40dB/dec slope in log amplitude and (-)180o step in phase, with 
(-)90o midway step at resonance frequency a.  Log amplitude at the 
resonance frequency depends on damping, and approaches zero (infinity) 
for zero damping.  Plug in values in the transfer function at resonance to 
find log amplitude at resonance.

2.

Example:

Single zero @ s = 0

Two poles  @ s = -a

Single zero @ 0 contribution

Double pole @ -a
contribution

Double pole @ -a
contribution

Closing the loop: open-loop phase margin for closed-loop stability

closed-loop
transfer function

open-loop
transfer function

target error
output

Single zero @ 0 contribution

controller biosystem (including
measurement)

Amplitudes multiply.
Log amplitudes and phases add.

Open-loop Bode design:

as

for

for

Poles:

Closed-loop stability:

The closed-loop system is unstable and oscillates at any frequency w where:

the open-loop gain is 1 (0 dB) in magnitude, and1)

the open-loop phase is -180o (anti-phase).2)

Phase margin is the degree to which the open-loop phase is higher than -180o

at the frequency w where the open-loop gain is 1 (0 dB) in magnitude.

Conversely, gain margin is the amount (in dB) of attenuation in open-loop 
gain at the frequency where the open-loop phase is -180o.

For zero or negative phase (gain) margin, the closed-loop system is unstable 
exhibiting unbounded or rising oscillations.  The higher the phase (gain) 
margin, the more damped the closed-loop dynamics.  For phase margins 
of -90o and above, the closed-loop dynamics is overdamped, with 
approximately a first-order response with time constant t = 1 / w.

Bode stability analysis and design, e.g.:

Bode design of proportional-integral-derivative (PID) control:

-->  2 zeros @  s = -zF1, -zF2

-->  1 pole   @  s = 0

for

for

for

low frequency

high frequency

midband frequency

Proportional control increases open-loop gain to bring closed-loop gain 
closer to unity for low error at low frequencies, but decreases open-
loop phase margin potentially causing instability with oscillation at high 
frequency.

Integral control further boosts open-loop gain by 20 dB/dec at low 
frequencies to decrease low-frequency closed-loop error.

Derivative control increases open-loop phase margin by 90o at high 
frequencies to improve high-frequency closed-loop dynamics.

zero @ s = -z1
poles @ s = -p1, -p2, -p3
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Amplitude
(Gain)

Phase

Transfer function
(complex)

Bode plot: log amplitude & phase vs log (radial) frequency:

Constant c:1.

Zero (s + a):2.

Pole 1 / (s + a):3.

PHASE (o):

GAIN (dB):

Bode plot parameters, directly from the poles and zeros of the transfer function:

Same as ZERO @ s = -a, except for sign reversal both in log amplitude and phase:

The Bode plot can be constructed by summing individual contributions for the constant, 
for each zero, and for each pole. 

Real!  Thus, either  positive or negative:

The constant contributes a flat response both in log amplitude and in phase.

To first order, each zero (@ s = -a) contributes a 20 dB/dec rise in slope of log 
amplitude, and a +90o step in phase, for radial frequencies above the magnitude 
of that zero (w > |a|).

More precisely, for a real negative zero, at the transition (w = a), the log 
amplitude has risen by +3 dB, and the phase has stepped halfway at 45o.

To first order, each pole (@ s = -a) contributes a -20 dB/dec decline in slope of 
log amplitude, and a -90o step down in phase, for radial frequencies above the 
magnitude of that zero (w > |a|).

More precisely, for a real negative pole, at the transition (w = a), the log 
amplitude has fallen by -3 dB, and the phase has stepped halfway at -45o. 

Putting it all together: constructing the Bode plot from individual contributions:

Start from log amplitude and phase (0 or 180o) given by the constant c.1.

Rank order the magnitudes a of all zeros and poles, from lowest 
(possibly zero) to highest.  For each a:

2.

If it is a zero: increase slope of log amplitude by +20 dB/dec, and 
step phase by +90o, for all frequencies above a, with a +3 dB rise 
and 45o midway step at the transition frequency a.

a.

If it is a pole: decrease slope of log amplitude by -20 dB/dec, and 
step phase down by -90o, for all frequencies above a, with a -3 dB 
fall and -45o midway step at the transition frequency a.

b.

If needed, fix indeterminate offset in log amplitude by taking limits of 
the transfer function for zero, infinite, or mid-band frequency where the 
log amplitude slope is flat.

3.

Notes:

The slope of log amplitude, in units 20 dB/dec, is almost always, but only 
approximately, equal to the phase, in units 90o.  It is always good to check 
consistency between the two.

1.

The above assumes all zeros and poles are real and negative.  For pairs of 
complex conjugate zeros (poles) with magnitude a, both contribute for a 
total (-)40dB/dec slope in log amplitude and (-)180o step in phase, with 
(-)90o midway step at resonance frequency a.  Log amplitude at the 
resonance frequency depends on damping, and approaches zero (infinity) 
for zero damping.  Plug in values in the transfer function at resonance to 
find log amplitude at resonance.

2.

Example:

Single zero @ s = 0

Two poles  @ s = -a

Single zero @ 0 contribution

Double pole @ -a
contribution

Double pole @ -a
contribution

Closing the loop: open-loop phase margin for closed-loop stability

closed-loop
transfer function

open-loop
transfer function

target error
output

Single zero @ 0 contribution

controller biosystem (including
measurement)

Amplitudes multiply.
Log amplitudes and phases add.

Open-loop Bode design:

as

for

for

Poles:

Closed-loop stability:

The closed-loop system is unstable and oscillates at any frequency w where:

the open-loop gain is 1 (0 dB) in magnitude, and1)

the open-loop phase is -180o (anti-phase).2)

Phase margin is the degree to which the open-loop phase is higher than -180o

at the frequency w where the open-loop gain is 1 (0 dB) in magnitude.

Conversely, gain margin is the amount (in dB) of attenuation in open-loop 
gain at the frequency where the open-loop phase is -180o.

For zero or negative phase (gain) margin, the closed-loop system is unstable 
exhibiting unbounded or rising oscillations.  The higher the phase (gain) 
margin, the more damped the closed-loop dynamics.  For phase margins 
of -90o and above, the closed-loop dynamics is overdamped, with 
approximately a first-order response with time constant t = 1 / w.

Bode stability analysis and design, e.g.:

Bode design of proportional-integral-derivative (PID) control:

-->  2 zeros @  s = -zF1, -zF2

-->  1 pole   @  s = 0

for

for

for

low frequency

high frequency

midband frequency

Proportional control increases open-loop gain to bring closed-loop gain 
closer to unity for low error at low frequencies, but decreases open-
loop phase margin potentially causing instability with oscillation at high 
frequency.

Integral control further boosts open-loop gain by 20 dB/dec at low 
frequencies to decrease low-frequency closed-loop error.

Derivative control increases open-loop phase margin by 90o at high 
frequencies to improve high-frequency closed-loop dynamics.

zero @ s = -z1
poles @ s = -p1, -p2, -p3
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Amplitude
(Gain)

Phase

Transfer function
(complex)

Bode plot: log amplitude & phase vs log (radial) frequency:

Constant c:1.

Zero (s + a):2.

Pole 1 / (s + a):3.

PHASE (o):

GAIN (dB):

Bode plot parameters, directly from the poles and zeros of the transfer function:

Same as ZERO @ s = -a, except for sign reversal both in log amplitude and phase:

The Bode plot can be constructed by summing individual contributions for the constant, 
for each zero, and for each pole. 

Real!  Thus, either  positive or negative:

The constant contributes a flat response both in log amplitude and in phase.

To first order, each zero (@ s = -a) contributes a 20 dB/dec rise in slope of log 
amplitude, and a +90o step in phase, for radial frequencies above the magnitude 
of that zero (w > |a|).

More precisely, for a real negative zero, at the transition (w = a), the log 
amplitude has risen by +3 dB, and the phase has stepped halfway at 45o.

To first order, each pole (@ s = -a) contributes a -20 dB/dec decline in slope of 
log amplitude, and a -90o step down in phase, for radial frequencies above the 
magnitude of that zero (w > |a|).

More precisely, for a real negative pole, at the transition (w = a), the log 
amplitude has fallen by -3 dB, and the phase has stepped halfway at -45o. 

Putting it all together: constructing the Bode plot from individual contributions:

Start from log amplitude and phase (0 or 180o) given by the constant c.1.

Rank order the magnitudes a of all zeros and poles, from lowest 
(possibly zero) to highest.  For each a:

2.

If it is a zero: increase slope of log amplitude by +20 dB/dec, and 
step phase by +90o, for all frequencies above a, with a +3 dB rise 
and 45o midway step at the transition frequency a.

a.

If it is a pole: decrease slope of log amplitude by -20 dB/dec, and 
step phase down by -90o, for all frequencies above a, with a -3 dB 
fall and -45o midway step at the transition frequency a.

b.

If needed, fix indeterminate offset in log amplitude by taking limits of 
the transfer function for zero, infinite, or mid-band frequency where the 
log amplitude slope is flat.

3.

Notes:

The slope of log amplitude, in units 20 dB/dec, is almost always, but only 
approximately, equal to the phase, in units 90o.  It is always good to check 
consistency between the two.

1.

The above assumes all zeros and poles are real and negative.  For pairs of 
complex conjugate zeros (poles) with magnitude a, both contribute for a 
total (-)40dB/dec slope in log amplitude and (-)180o step in phase, with 
(-)90o midway step at resonance frequency a.  Log amplitude at the 
resonance frequency depends on damping, and approaches zero (infinity) 
for zero damping.  Plug in values in the transfer function at resonance to 
find log amplitude at resonance.

2.

Example:

Single zero @ s = 0

Two poles  @ s = -a

Single zero @ 0 contribution

Double pole @ -a
contribution

Double pole @ -a
contribution

Closing the loop: open-loop phase margin for closed-loop stability

closed-loop
transfer function

open-loop
transfer function

target error
output

Single zero @ 0 contribution

controller biosystem (including
measurement)

Amplitudes multiply.
Log amplitudes and phases add.

Open-loop Bode design:

as

for

for

Poles:

Closed-loop stability:

The closed-loop system is unstable and oscillates at any frequency w where:

the open-loop gain is 1 (0 dB) in magnitude, and1)

the open-loop phase is -180o (anti-phase).2)

Phase margin is the degree to which the open-loop phase is higher than -180o

at the frequency w where the open-loop gain is 1 (0 dB) in magnitude.

Conversely, gain margin is the amount (in dB) of attenuation in open-loop 
gain at the frequency where the open-loop phase is -180o.

For zero or negative phase (gain) margin, the closed-loop system is unstable 
exhibiting unbounded or rising oscillations.  The higher the phase (gain) 
margin, the more damped the closed-loop dynamics.  For phase margins 
of -90o and above, the closed-loop dynamics is overdamped, with 
approximately a first-order response with time constant t = 1 / w.

Bode stability analysis and design, e.g.:

Bode design of proportional-integral-derivative (PID) control:

-->  2 zeros @  s = -zF1, -zF2

-->  1 pole   @  s = 0

for

for

for

low frequency

high frequency

midband frequency

Proportional control increases open-loop gain to bring closed-loop gain 
closer to unity for low error at low frequencies, but decreases open-
loop phase margin potentially causing instability with oscillation at high 
frequency.

Integral control further boosts open-loop gain by 20 dB/dec at low 
frequencies to decrease low-frequency closed-loop error.

Derivative control increases open-loop phase margin by 90o at high 
frequencies to improve high-frequency closed-loop dynamics.

zero @ s = -z1
poles @ s = -p1, -p2, -p3
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Amplitude
(Gain)

Phase

Transfer function
(complex)

Bode plot: log amplitude & phase vs log (radial) frequency:

Constant c:1.

Zero (s + a):2.

Pole 1 / (s + a):3.

PHASE (o):

GAIN (dB):

Bode plot parameters, directly from the poles and zeros of the transfer function:

Same as ZERO @ s = -a, except for sign reversal both in log amplitude and phase:

The Bode plot can be constructed by summing individual contributions for the constant, 
for each zero, and for each pole. 

Real!  Thus, either  positive or negative:

The constant contributes a flat response both in log amplitude and in phase.

To first order, each zero (@ s = -a) contributes a 20 dB/dec rise in slope of log 
amplitude, and a +90o step in phase, for radial frequencies above the magnitude 
of that zero (w > |a|).

More precisely, for a real negative zero, at the transition (w = a), the log 
amplitude has risen by +3 dB, and the phase has stepped halfway at 45o.

To first order, each pole (@ s = -a) contributes a -20 dB/dec decline in slope of 
log amplitude, and a -90o step down in phase, for radial frequencies above the 
magnitude of that zero (w > |a|).

More precisely, for a real negative pole, at the transition (w = a), the log 
amplitude has fallen by -3 dB, and the phase has stepped halfway at -45o. 

Putting it all together: constructing the Bode plot from individual contributions:

Start from log amplitude and phase (0 or 180o) given by the constant c.1.

Rank order the magnitudes a of all zeros and poles, from lowest 
(possibly zero) to highest.  For each a:

2.

If it is a zero: increase slope of log amplitude by +20 dB/dec, and 
step phase by +90o, for all frequencies above a, with a +3 dB rise 
and 45o midway step at the transition frequency a.

a.

If it is a pole: decrease slope of log amplitude by -20 dB/dec, and 
step phase down by -90o, for all frequencies above a, with a -3 dB 
fall and -45o midway step at the transition frequency a.

b.

If needed, fix indeterminate offset in log amplitude by taking limits of 
the transfer function for zero, infinite, or mid-band frequency where the 
log amplitude slope is flat.

3.

Notes:

The slope of log amplitude, in units 20 dB/dec, is almost always, but only 
approximately, equal to the phase, in units 90o.  It is always good to check 
consistency between the two.

1.

The above assumes all zeros and poles are real and negative.  For pairs of 
complex conjugate zeros (poles) with magnitude a, both contribute for a 
total (-)40dB/dec slope in log amplitude and (-)180o step in phase, with 
(-)90o midway step at resonance frequency a.  Log amplitude at the 
resonance frequency depends on damping, and approaches zero (infinity) 
for zero damping.  Plug in values in the transfer function at resonance to 
find log amplitude at resonance.

2.

Example:

Single zero @ s = 0

Two poles  @ s = -a

Single zero @ 0 contribution

Double pole @ -a
contribution

Double pole @ -a
contribution

Closing the loop: open-loop phase margin for closed-loop stability

closed-loop
transfer function

open-loop
transfer function

target error
output

Single zero @ 0 contribution

controller biosystem (including
measurement)

Amplitudes multiply.
Log amplitudes and phases add.

Open-loop Bode design:

as

for

for

Poles:

Closed-loop stability:

The closed-loop system is unstable and oscillates at any frequency w where:

the open-loop gain is 1 (0 dB) in magnitude, and1)

the open-loop phase is -180o (anti-phase).2)

Phase margin is the degree to which the open-loop phase is higher than -180o

at the frequency w where the open-loop gain is 1 (0 dB) in magnitude.

Conversely, gain margin is the amount (in dB) of attenuation in open-loop 
gain at the frequency where the open-loop phase is -180o.

For zero or negative phase (gain) margin, the closed-loop system is unstable 
exhibiting unbounded or rising oscillations.  The higher the phase (gain) 
margin, the more damped the closed-loop dynamics.  For phase margins 
of -90o and above, the closed-loop dynamics is overdamped, with 
approximately a first-order response with time constant t = 1 / w.

Bode stability analysis and design, e.g.:

Bode design of proportional-integral-derivative (PID) control:

-->  2 zeros @  s = -zF1, -zF2

-->  1 pole   @  s = 0

for

for

for

low frequency

high frequency

midband frequency

Proportional control increases open-loop gain to bring closed-loop gain 
closer to unity for low error at low frequencies, but decreases open-
loop phase margin potentially causing instability with oscillation at high 
frequency.

Integral control further boosts open-loop gain by 20 dB/dec at low 
frequencies to decrease low-frequency closed-loop error.

Derivative control increases open-loop phase margin by 90o at high 
frequencies to improve high-frequency closed-loop dynamics.

zero @ s = -z1
poles @ s = -p1, -p2, -p3
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Amplitude
(Gain)

Phase

Transfer function
(complex)

Bode plot: log amplitude & phase vs log (radial) frequency:

Constant c:1.

Zero (s + a):2.

Pole 1 / (s + a):3.

PHASE (o):

GAIN (dB):

Bode plot parameters, directly from the poles and zeros of the transfer function:

Same as ZERO @ s = -a, except for sign reversal both in log amplitude and phase:

The Bode plot can be constructed by summing individual contributions for the constant, 
for each zero, and for each pole. 

Real!  Thus, either  positive or negative:

The constant contributes a flat response both in log amplitude and in phase.

To first order, each zero (@ s = -a) contributes a 20 dB/dec rise in slope of log 
amplitude, and a +90o step in phase, for radial frequencies above the magnitude 
of that zero (w > |a|).

More precisely, for a real negative zero, at the transition (w = a), the log 
amplitude has risen by +3 dB, and the phase has stepped halfway at 45o.

To first order, each pole (@ s = -a) contributes a -20 dB/dec decline in slope of 
log amplitude, and a -90o step down in phase, for radial frequencies above the 
magnitude of that zero (w > |a|).

More precisely, for a real negative pole, at the transition (w = a), the log 
amplitude has fallen by -3 dB, and the phase has stepped halfway at -45o. 

Putting it all together: constructing the Bode plot from individual contributions:

Start from log amplitude and phase (0 or 180o) given by the constant c.1.

Rank order the magnitudes a of all zeros and poles, from lowest 
(possibly zero) to highest.  For each a:

2.

If it is a zero: increase slope of log amplitude by +20 dB/dec, and 
step phase by +90o, for all frequencies above a, with a +3 dB rise 
and 45o midway step at the transition frequency a.

a.

If it is a pole: decrease slope of log amplitude by -20 dB/dec, and 
step phase down by -90o, for all frequencies above a, with a -3 dB 
fall and -45o midway step at the transition frequency a.

b.

If needed, fix indeterminate offset in log amplitude by taking limits of 
the transfer function for zero, infinite, or mid-band frequency where the 
log amplitude slope is flat.

3.

Notes:

The slope of log amplitude, in units 20 dB/dec, is almost always, but only 
approximately, equal to the phase, in units 90o.  It is always good to check 
consistency between the two.

1.

The above assumes all zeros and poles are real and negative.  For pairs of 
complex conjugate zeros (poles) with magnitude a, both contribute for a 
total (-)40dB/dec slope in log amplitude and (-)180o step in phase, with 
(-)90o midway step at resonance frequency a.  Log amplitude at the 
resonance frequency depends on damping, and approaches zero (infinity) 
for zero damping.  Plug in values in the transfer function at resonance to 
find log amplitude at resonance.

2.

Example:

Single zero @ s = 0

Two poles  @ s = -a

Single zero @ 0 contribution

Double pole @ -a
contribution

Double pole @ -a
contribution

Closing the loop: open-loop phase margin for closed-loop stability

closed-loop
transfer function

open-loop
transfer function

target error
output

Single zero @ 0 contribution

controller biosystem (including
measurement)

Amplitudes multiply.
Log amplitudes and phases add.

Open-loop Bode design:

as

for

for

Poles:

Closed-loop stability:

The closed-loop system is unstable and oscillates at any frequency w where:

the open-loop gain is 1 (0 dB) in magnitude, and1)

the open-loop phase is -180o (anti-phase).2)

Phase margin is the degree to which the open-loop phase is higher than -180o

at the frequency w where the open-loop gain is 1 (0 dB) in magnitude.

Conversely, gain margin is the amount (in dB) of attenuation in open-loop 
gain at the frequency where the open-loop phase is -180o.

For zero or negative phase (gain) margin, the closed-loop system is unstable 
exhibiting unbounded or rising oscillations.  The higher the phase (gain) 
margin, the more damped the closed-loop dynamics.  For phase margins 
of -90o and above, the closed-loop dynamics is overdamped, with 
approximately a first-order response with time constant t = 1 / w.

Bode stability analysis and design, e.g.:

Bode design of proportional-integral-derivative (PID) control:

-->  2 zeros @  s = -zF1, -zF2

-->  1 pole   @  s = 0

for

for

for

low frequency

high frequency

midband frequency

Proportional control increases open-loop gain to bring closed-loop gain 
closer to unity for low error at low frequencies, but decreases open-
loop phase margin potentially causing instability with oscillation at high 
frequency.

Integral control further boosts open-loop gain by 20 dB/dec at low 
frequencies to decrease low-frequency closed-loop error.

Derivative control increases open-loop phase margin by 90o at high 
frequencies to improve high-frequency closed-loop dynamics.

zero @ s = -z1
poles @ s = -p1, -p2, -p3
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Amplitude
(Gain)

Phase

Transfer function
(complex)

Bode plot: log amplitude & phase vs log (radial) frequency:

Constant c:1.

Zero (s + a):2.

Pole 1 / (s + a):3.

PHASE (o):

GAIN (dB):

Bode plot parameters, directly from the poles and zeros of the transfer function:

Same as ZERO @ s = -a, except for sign reversal both in log amplitude and phase:

The Bode plot can be constructed by summing individual contributions for the constant, 
for each zero, and for each pole. 

Real!  Thus, either  positive or negative:

The constant contributes a flat response both in log amplitude and in phase.

To first order, each zero (@ s = -a) contributes a 20 dB/dec rise in slope of log 
amplitude, and a +90o step in phase, for radial frequencies above the magnitude 
of that zero (w > |a|).

More precisely, for a real negative zero, at the transition (w = a), the log 
amplitude has risen by +3 dB, and the phase has stepped halfway at 45o.

To first order, each pole (@ s = -a) contributes a -20 dB/dec decline in slope of 
log amplitude, and a -90o step down in phase, for radial frequencies above the 
magnitude of that zero (w > |a|).

More precisely, for a real negative pole, at the transition (w = a), the log 
amplitude has fallen by -3 dB, and the phase has stepped halfway at -45o. 

Putting it all together: constructing the Bode plot from individual contributions:

Start from log amplitude and phase (0 or 180o) given by the constant c.1.

Rank order the magnitudes a of all zeros and poles, from lowest 
(possibly zero) to highest.  For each a:

2.

If it is a zero: increase slope of log amplitude by +20 dB/dec, and 
step phase by +90o, for all frequencies above a, with a +3 dB rise 
and 45o midway step at the transition frequency a.

a.

If it is a pole: decrease slope of log amplitude by -20 dB/dec, and 
step phase down by -90o, for all frequencies above a, with a -3 dB 
fall and -45o midway step at the transition frequency a.

b.

If needed, fix indeterminate offset in log amplitude by taking limits of 
the transfer function for zero, infinite, or mid-band frequency where the 
log amplitude slope is flat.

3.

Notes:

The slope of log amplitude, in units 20 dB/dec, is almost always, but only 
approximately, equal to the phase, in units 90o.  It is always good to check 
consistency between the two.

1.

The above assumes all zeros and poles are real and negative.  For pairs of 
complex conjugate zeros (poles) with magnitude a, both contribute for a 
total (-)40dB/dec slope in log amplitude and (-)180o step in phase, with 
(-)90o midway step at resonance frequency a.  Log amplitude at the 
resonance frequency depends on damping, and approaches zero (infinity) 
for zero damping.  Plug in values in the transfer function at resonance to 
find log amplitude at resonance.

2.

Example:

Single zero @ s = 0

Two poles  @ s = -a

Single zero @ 0 contribution

Double pole @ -a
contribution

Double pole @ -a
contribution

Closing the loop: open-loop phase margin for closed-loop stability

closed-loop
transfer function

open-loop
transfer function

target error
output

Single zero @ 0 contribution

controller biosystem (including
measurement)

Amplitudes multiply.
Log amplitudes and phases add.

Open-loop Bode design:

as

for

for

Poles:

Closed-loop stability:

The closed-loop system is unstable and oscillates at any frequency w where:

the open-loop gain is 1 (0 dB) in magnitude, and1)

the open-loop phase is -180o (anti-phase).2)

Phase margin is the degree to which the open-loop phase is higher than -180o

at the frequency w where the open-loop gain is 1 (0 dB) in magnitude.

Conversely, gain margin is the amount (in dB) of attenuation in open-loop 
gain at the frequency where the open-loop phase is -180o.

For zero or negative phase (gain) margin, the closed-loop system is unstable 
exhibiting unbounded or rising oscillations.  The higher the phase (gain) 
margin, the more damped the closed-loop dynamics.  For phase margins 
of -90o and above, the closed-loop dynamics is overdamped, with 
approximately a first-order response with time constant t = 1 / w.

Bode stability analysis and design, e.g.:

Bode design of proportional-integral-derivative (PID) control:

-->  2 zeros @  s = -zF1, -zF2

-->  1 pole   @  s = 0

for

for

for

low frequency

high frequency

midband frequency

Proportional control increases open-loop gain to bring closed-loop gain 
closer to unity for low error at low frequencies, but decreases open-
loop phase margin potentially causing instability with oscillation at high 
frequency.

Integral control further boosts open-loop gain by 20 dB/dec at low 
frequencies to decrease low-frequency closed-loop error.

Derivative control increases open-loop phase margin by 90o at high 
frequencies to improve high-frequency closed-loop dynamics.

zero @ s = -z1
poles @ s = -p1, -p2, -p3

Lecture 11: Bode Design and Phase Margin
Thursday, November 12, 2020 8:48 AM



References:

Tranquillo JV. Biomedical Signals and Systems, Morgan & Claypool 
Publishers, Dec. 2013.  Ch. 8 & Ch. 9 (Sec. 8.5, 9.6, 9.7).

Amplitude
(Gain)

Phase

Transfer function
(complex)

Bode plot: log amplitude & phase vs log (radial) frequency:

Constant c:1.

Zero (s + a):2.

Pole 1 / (s + a):3.

PHASE (o):

GAIN (dB):

Bode plot parameters, directly from the poles and zeros of the transfer function:

Same as ZERO @ s = -a, except for sign reversal both in log amplitude and phase:

The Bode plot can be constructed by summing individual contributions for the constant, 
for each zero, and for each pole. 

Real!  Thus, either  positive or negative:

The constant contributes a flat response both in log amplitude and in phase.

To first order, each zero (@ s = -a) contributes a 20 dB/dec rise in slope of log 
amplitude, and a +90o step in phase, for radial frequencies above the magnitude 
of that zero (w > |a|).

More precisely, for a real negative zero, at the transition (w = a), the log 
amplitude has risen by +3 dB, and the phase has stepped halfway at 45o.

To first order, each pole (@ s = -a) contributes a -20 dB/dec decline in slope of 
log amplitude, and a -90o step down in phase, for radial frequencies above the 
magnitude of that zero (w > |a|).

More precisely, for a real negative pole, at the transition (w = a), the log 
amplitude has fallen by -3 dB, and the phase has stepped halfway at -45o. 

Putting it all together: constructing the Bode plot from individual contributions:

Start from log amplitude and phase (0 or 180o) given by the constant c.1.

Rank order the magnitudes a of all zeros and poles, from lowest 
(possibly zero) to highest.  For each a:

2.

If it is a zero: increase slope of log amplitude by +20 dB/dec, and 
step phase by +90o, for all frequencies above a, with a +3 dB rise 
and 45o midway step at the transition frequency a.

a.

If it is a pole: decrease slope of log amplitude by -20 dB/dec, and 
step phase down by -90o, for all frequencies above a, with a -3 dB 
fall and -45o midway step at the transition frequency a.

b.

If needed, fix indeterminate offset in log amplitude by taking limits of 
the transfer function for zero, infinite, or mid-band frequency where the 
log amplitude slope is flat.

3.

Notes:

The slope of log amplitude, in units 20 dB/dec, is almost always, but only 
approximately, equal to the phase, in units 90o.  It is always good to check 
consistency between the two.

1.

The above assumes all zeros and poles are real and negative.  For pairs of 
complex conjugate zeros (poles) with magnitude a, both contribute for a 
total (-)40dB/dec slope in log amplitude and (-)180o step in phase, with 
(-)90o midway step at resonance frequency a.  Log amplitude at the 
resonance frequency depends on damping, and approaches zero (infinity) 
for zero damping.  Plug in values in the transfer function at resonance to 
find log amplitude at resonance.

2.

Example:

Single zero @ s = 0

Two poles  @ s = -a

Single zero @ 0 contribution

Double pole @ -a
contribution

Double pole @ -a
contribution

Closing the loop: open-loop phase margin for closed-loop stability

closed-loop
transfer function

open-loop
transfer function

target error
output

Single zero @ 0 contribution

controller biosystem (including
measurement)

Amplitudes multiply.
Log amplitudes and phases add.

Open-loop Bode design:

as

for

for

Poles:

Closed-loop stability:

The closed-loop system is unstable and oscillates at any frequency w where:

the open-loop gain is 1 (0 dB) in magnitude, and1)

the open-loop phase is -180o (anti-phase).2)

Phase margin is the degree to which the open-loop phase is higher than -180o

at the frequency w where the open-loop gain is 1 (0 dB) in magnitude.

Conversely, gain margin is the amount (in dB) of attenuation in open-loop 
gain at the frequency where the open-loop phase is -180o.

For zero or negative phase (gain) margin, the closed-loop system is unstable 
exhibiting unbounded or rising oscillations.  The higher the phase (gain) 
margin, the more damped the closed-loop dynamics.  For phase margins 
of -90o and above, the closed-loop dynamics is overdamped, with 
approximately a first-order response with time constant t = 1 / w.

Bode stability analysis and design, e.g.:

Bode design of proportional-integral-derivative (PID) control:

-->  2 zeros @  s = -zF1, -zF2

-->  1 pole   @  s = 0

for

for

for

low frequency

high frequency

midband frequency

Proportional control increases open-loop gain to bring closed-loop gain 
closer to unity for low error at low frequencies, but decreases open-
loop phase margin potentially causing instability with oscillation at high 
frequency.

Integral control further boosts open-loop gain by 20 dB/dec at low 
frequencies to decrease low-frequency closed-loop error.

Derivative control increases open-loop phase margin by 90o at high 
frequencies to improve high-frequency closed-loop dynamics.

zero @ s = -z1
poles @ s = -p1, -p2, -p3
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