Lecture 3: Linear transforms

References:

Tranquillo JV. Biomedical Signals and Systems, Morgan \& Claypool Publishers, Dec. 2013. Ch. 4 (Sec. 4.1-4.8).

LTI ODE Systems: the power of exponential

$$
\begin{aligned}
& \underset{f(t)}{\longrightarrow \text { LI }} \underset{x(t)}{ } \\
& c f(t) \xrightarrow[\text { linear }]{ } c x(t) \\
& f_{1}(t)+f_{2}(t) \xrightarrow{\text { linear }} x_{1}(t)+x_{2}(t) \\
& f\left(t-t_{0}\right) \xrightarrow{\text { inememerant }} \times\left(t-t_{0}\right) \\
& \sum_{i} c_{i} f_{i}(t) \longrightarrow \sum_{i} c_{i} x_{i}(t) \\
& \text { Any linear transformation of solutions is still } \\
& \text { a solution to the LTI ODE. We will seek linear } \\
& \text { transforms that permit finding solutions } \\
& \text { using just linear algebra. }
\end{aligned}
$$

$$
\begin{array}{ll}
\frac{d f}{d t} & \\
\begin{array}{l}
\angle T I \\
d t^{i}
\end{array} & \begin{array}{l}
d x \\
d t \\
\\
d^{i} f
\end{array}
\end{array}
$$

Derivatives are also linear operators, and are invariant to linear transforms.

Linear transforms acting on LTI ODEs:
LTI ODE in explicit form:

$$
a_{n} \frac{d^{n} x}{d t^{n}}+e_{n-1} \frac{d^{n-1} x}{d t^{n-1}}+\ldots+a_{0} x(t)=f(t)
$$

LTI ODEs in canonical form (equivalent):

$$
\begin{aligned}
& \frac{d}{d t} \vec{x}=\overrightarrow{\vec{A}} \cdot \vec{x}(t)+\vec{b} \cdot f(t) \\
& \vec{x}:\left(\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
\vdots \\
x_{n}
\end{array}\right) \quad \text { ecg: } \begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
\\
x_{n}
\end{array} \\
& x_{1}=x \\
& x_{2}=\frac{d}{d t} x_{1}=\frac{d}{d t} x \quad \text { or: } \frac{d}{d t} x_{1}=x_{2} \\
& x_{3}=\frac{d}{d t} x_{2}=\frac{d d^{2}}{d t^{2}} x \quad \frac{d}{d t} x_{2}=x_{3} \\
& x_{n}=\frac{d}{d t} x_{n-1}=\frac{d^{n-1}}{d t^{n-1}} X \quad \frac{d}{d l} x_{n-1}=x_{n} \\
& \text { state } \\
& \text { vector } \\
& \frac{d}{d t} x_{n}=-\frac{a_{n-1}}{a_{n}} x_{n} \cdots-\frac{d}{d n} x_{1}-\frac{1}{a_{n}} f(t)
\end{aligned}
$$

Initial conditions are required to specify the solution:

$$
\text { I.C.: } \vec{x}(0)=\vec{x}_{0} \quad\left\{\begin{aligned}
& x(0)= x_{0} \\
& \frac{d}{(i t} x(0)=x_{0}^{(n)} \\
&, \\
& d^{(n-1} \\
& d t^{(n-1} x(0)=x_{0}^{(n-1)}
\end{aligned}\right.
$$

"Calculus textbook" solution to the homogeneous LTI ODE ($\mathrm{f}=0$):

$$
\begin{aligned}
& a_{n} \frac{d^{n} x}{d t^{n}}+e_{n-1} \frac{d^{n-1} x}{d t^{n-1}}+\ldots+a_{0} x(t)=0 \\
& T \text { st Exponential are special! } \\
& \text { Derivatives reduce to } \\
& \text { scaling factors } \\
& \text { polynomial in } s \text {, turning } \\
& \text { the problem of solving } \\
& \text { the ODE into finding } \\
& \text { roots of a polynomial. } \\
& \left(a_{n} s^{n}+a_{n-1} s^{n-1}+\ldots a_{0}\right) \underset{x(t)}{e^{s t}}=0
\end{aligned}
$$

Characteristic equation:

$$
a_{n} s^{n}+a_{n-1} s^{n-1}+\ldots a_{0}=0
$$

n roots $s=s_{i}$ of this characteristic equation all give valid solutions. The general homogeneous solution is any linear combination:

$$
x(t)=\sum_{i} c_{i} e^{s i t} \rightarrow x(t)=\frac{1}{2 \pi j} \int_{\sigma-j \infty}^{\sigma+j \infty} \underbrace{\int_{\text {LTI ODE homogeneous solution }}(\ldots)}_{x(s)} e^{s t} d s
$$ as finite sum of exponential at discrete values $s=s_{i}$. Specific values of the coefficients are determined by initial conditions.

Laplace extends this concept by expressing the signal $x(t)$ as an infinite sum (integral) of exponential at continuous (complex) values s. The coefficients in the expansion are values of the Laplace transform, $x(s)$.

Laplace transform

$$
x(s)=\int_{0}^{+\infty} x(t) e^{-s t} d t
$$

Laplace expresses the time-varying signal $x(t)$ as a linear combination of exponential $e^{s t}$, with coefficients given by $x(s)$.

You can think of the complex Laplace variable $s=\sigma+\mathrm{j} \omega$ as the coefficient of exponential time dependence in the signal, where σ is the rate of rise/decay, and ω is the angular frequency of oscillation in the signal over time.

The Laplace transform is linear, and time-invariant. It preserves linear scaling of the signal, and it turns a uniform delay t_{0} into a common scaling factor $e^{-s t_{0}}$.

It turns LTI ODEs into algebraic equations that are readily solved using just linear algebra, with coefficients that are polynomial in s.

Properties of Laplace transforms:

$$
\begin{aligned}
& L(x(t))=\int_{0}^{+\infty} x(t) c^{-s t} d t \\
& L\left(c_{1} x_{1}(t)+c_{2} x_{2}(t)\right)=c_{1}\left[\left(x_{1}(t)\right)+c_{2} L\left(x_{2}(t)\right)\right. \\
& L\left(\frac{d}{d t} x(t)\right)=\int_{0}^{+\infty} \underbrace{d t(t)}_{\frac{1}{\sqrt{4}} m} \cdot \underbrace{+\infty}_{v} \underbrace{-s t} d t
\end{aligned}
$$

$$
\begin{aligned}
& \int \frac{d n}{d t} v d t=\pi r-\int-\int \sqrt{2 v^{2}} \cdot x \\
& =\left[x(t) e^{-s t}\right]_{0}^{+\infty}-\int_{0}^{+\infty} x(t) \cdot\left(-5 \cdot e^{-s t}\right) d t \\
& 0-x(0)^{0}+s^{0} \int_{L(x(t))}^{+\infty} x(t) e^{-s t} d t t
\end{aligned}
$$

Laplace transforms of common functions:
$L(\delta(t))=\int_{0}^{+\infty} \delta(t) e^{-s t} \cdot t t \simeq \int_{0-\varepsilon}^{0+\varepsilon} s(t) \cdot 1 d t=1$

$$
\begin{aligned}
& L(H(t))=\frac{1}{s} \\
& L\left(f\left(t-t_{0}\right)\right)=e^{-s t_{0}} \cdot L(f(t)) \\
& L\left(e^{a t}\right)=\frac{1}{s-\alpha} \quad L\left(e^{s_{i} t}\right)
\end{aligned}
$$

Solving LTI ODEs using Laplace:

$$
\begin{aligned}
& L\left(\frac{d^{i}}{d t^{i}} x(t)\right)=s^{i} \cdot\left[(x(t))-\frac{d^{i-1}}{d k^{2}-1} \times(0)-s \frac{d^{i-2}}{u^{i-2}} \times(0)-\ldots s^{i-1} \times(0)\right. \\
& {\left[\left(a_{m} \frac{d^{n} x}{d t^{n}}+a_{n-1} \frac{d^{n-1} x}{d t^{n-1}}+\cdots d_{0} x(t)=f(t)\right)\right.} \\
& \left(a_{n} s^{n}+a_{n-1} s^{n-1}+\cdots d_{0}\right) \underbrace{I(x(t)}_{x(s)})-\underbrace{(\ldots) p(s)}_{I, C .}=\underbrace{\substack{\text { some polynomial in } s}}_{f(s)}=\underbrace{\square f(t)}) \\
& x(s)=\frac{f(s)+(\ldots) p(s)}{x_{n} s^{m}+\ldots d_{0}}=\frac{c_{1}}{s-s_{1}}+\frac{c_{2}}{s-s_{2}}+\ldots \\
& x(t) \\
& =c_{1} c^{-s_{1} t}+c_{2} e^{-s_{2} t} \ldots
\end{aligned}
$$

Inverse Laplace transform, using partial fractional decomposition:

$$
\begin{aligned}
& x(s)=e^{\frac{1}{s}+g+\sum_{i} c_{i} \frac{1}{s-s_{i}}} \\
& x(t)=\underbrace{e H(t)+g . \delta(t)}_{\text {DRUG }+ \text { I.C. }}+\sum_{i} c_{i} e^{+s_{i} t}
\end{aligned}
$$

Fourier transform

$$
\begin{aligned}
F(x(t)) & =\int_{-\infty}^{+\infty} x(t) \cdot e^{-j \omega t} d t \\
& =\left[(x (t)) \text { where: } \left\{\begin{array}{l}
s=j \omega \quad(\sigma=0) \\
x(t)=0 \text { foal } t \leqslant 0 \\
I, C . \equiv 0
\end{array}\right.\right.
\end{aligned}
$$

If I.C. $=0: \quad x(s)=H(s) \cdot f(s)$

$$
x(j \omega)=H(j \omega) \cdot f(j \omega)
$$

Transfer function in

$$
(s=j \omega)
$$

z-transform

$$
\begin{aligned}
& x(t) \approx \sum x[n] \delta(t-n T) \\
& n=0 \\
& \begin{array}{r}
L(x(t)) \approx \sum_{n=0}^{\infty} x[n] \underbrace{e^{-s n T}}_{\left(e^{+s T}\right)^{-n}}=Z^{e^{-s}(x[n])} \quad z=e^{s T}
\end{array}
\end{aligned}
$$

z represents a one-unit (T) time advance in the Laplace domain

