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General control setting (Lecture 8):

Our task is to design the controller F(s), based on a model of the biosystem 
H(s), and the measurement feedback system G(s).

We consider a mixture of three control strategies for F(s).

The effect of this design choice for controller F(s) on the closed-loop dynamics CL(s) 
depends on the models for the biosystem H(s) and measurement G(s).

Consider ideal measurement:

and two cases of an example biosystem with second-order dynamics:

Resulting closed-loop transfer function, in both cases:

which for proportional control reduce to:

e.g., position of force-driven 
damped spring-mass system

(second-order lowpass)

e.g., velocity of force-driven 
damped spring-mass system

(second-order bandpass)

Kp increases speed of the 
low-pass response, but 
with steady-state error,

and ringing (under-damped 
oscillations).

Steady-state gain (s = 0): 

Kp increases damping of the 
low-pass response, but 

without steady-state response,
and with slow (over-damped) 

settling.

Steady-state gain (s = 0):

These steady-state errors are remediated by adding integral control.

The dynamics are further improved by adding derivative control.

Steady-state gain (s = 0): Steady-state gain (s = 0):

Adding derivative control further improves on the high-frequency response.

Derivative control Kd improves high-frequency response (lowers the rise time)

Integral control Ki improves low-frequency response (reduces steady-state error)

Proportional control Kp allows to improve mid-frequency response (improve 
settling by critically damping the response)

at low frequencies (s = 0):

at high frequencies (s      ): 

at low frequencies (s = 0):

at high frequencies (s      ): 
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