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Abstract— An accurate model of insulin-glucose dynamics is
paramount when regulating glycemic disorders in which the body
has an inadequate response to hyperglycemia. In this paper, we
develop an insulin-glucose dynamics model that is an extension of
the Bergman Minimal Model and can account for concentration
changes that occur if the patient ingests a meal during the
simulation. We simulate glucose dynamics for healthy individuals,
Type-l1 diabetics, and Type-Il/gestational diabetics. For Type-I
diabetics, we propose a PID controller that can regulate the release
of exogenous insulin. Comparing the value of the steady-state
glucose concentration from the original Bergman model
simulation with its expected value (determined by parameter ps)
resulted in a 0.85% steady-state error for healthy patients and a
6.78% error for Type-II diabetics. Comparing steady-state insulin
concentration with its expected value I, resulted in a 0.36% error
for healthy patients and a 1.13% error for Type-II diabetics. Due
to negligible insulin dynamics, we omit error calculations from the
original Bergman simulation for Type-1 diabetics. However,
applying a PID controller to the original Bergman model for a
Type-1 diabetic yielded a steady-state error of 0.74%, suggesting
that implementing a PID control paired with an insulin pump
could be an effective therapy for diabetes regulation.

I.  INTRODUCTION

There are three types of diabetes: Type I, Type II, and
gestational diabetes. Type I diabetes corresponds to the body’s
inhibition of pancreatic insulin production and it makes up
approximately 5-10% of diabetic cases. Type II diabetes occurs
when the body has a resistance to the effects of insulin or
improper insulin storage; making up 90-95% of diabetic cases
[9]. Lastly, gestational diabetes is caused by high blood glucose
levels during pregnancy. Gestational diabetes patients have
limited insulin production and insulin resistance due to the fact
that during pregnancy, the need for insulin increases and some
expecting mothers’ bodies cannot account for this need. There
are several causes of gestational diabetes, but for the most part,
the diabetes subsides after the patient gives birth; however, they
are at higher risk of obtaining Type-II diabetes [7]. It is
essential for the human body to maintain blood glucose
concentrations in order to properly function [1]. The standard
physiological ranges for blood glucose and insulin are
0.39-0.59 g/l and 2-50 mU/L respectively. These three
glycemic disorders are characterized by malfunctioning
glucose and insulin control, often resulting in elevated
(hyperglycemic) or reduced (hypoglycemic) blood glucose
levels. Without treatment, complications such as kidney
damage, eye damage, heart disease, or stroke can occur in Type
IT diabetics and fetal complications can occur in gestational
diabetics. In this report, Type II and Gestational diabetes are
modeled by the same control system, due to similarities in their
physiological effects and negligible differences between the
two control systems.

II. THE BERGMAN MINIMAL MODEL

Glucose-insulin dynamics in the body are very complex, but
Bergman’s minimal model is a simple, widely used
representation that is often sufficient for analytical purposes
[2]. The minimal model contains two submodels to describe
both insulin and glucose kinetics within a compartment of a
certain volume, which represents the blood volume of the
system of interest (i.e. human body). The flow of glucose in and
out of this volume V¢ results in a base glucose concentration
Gp. At concentrations greater than G, glucose is taken up by
the liver and surrounding tissues. In concentrations below Gp,
glucose is produced and released by the liver. Glucose uptake is
facilitated by “active insulin” (designed /> ) that is placed in a
“remote pool,” and whose entry into Vg is delayed by
“transport across capillaries” [2]. This ultimately results in two
differential equations (1) and (2):
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Where p; are parameters describing glucose effectiveness or
insulin sensitivity, G(¢) is blood glucose concentration, G is
baseline glucose concentration, X(¢) describes the effects of
active insulin, /(¢) is blood insulin concentration, and I is
baseline insulin concentration [2].

The Insulin Minimal Model is given by the differential
equation (3):
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The p-parameters are described in more detail in Table 1, found
in the Appendix [2]. Together, Equations (1), (2), and (3)
comprise the Bergman Minimal Model.

A Simulink model for glucose-insulin dynamics was
created based on the Bergman Equations. The following
assumptions are made: the biosystem is modeled as a single
compartment with homogenous concentrations of glucose and
insulin; the concentrations of glucose and insulin do not drop
below their basal values; and model parameters are
approximately constant.

Fig. 1 Simulink block diagram for a healthy individual based on the three
Bergman Equations. There is no external control system; the whole diagram
represents the biosystem. The parameters and their values are described in

Table 1.



For Type-I diabetics, this system would be turned into a
closed-loop model with an insulin pump that acts as a
controller, which affects an exogenous supply of insulin
denoted by u(?) [2]. Such closed-loop systems typically consist
of a glucose concentration monitor, a delivery pump, and a
digital controller, eliminating the need for manual injection of
insulin. An open-loop system, which is not sensitive to
feedback, could also be used where the amount of exogenous
insulin delivered is set at a predetermined value [1]. For healthy
individuals during meals, adding an element of feedforward
control based on the size of a meal can lower glucose
concentration peaks and result in a more gradual release of
bolus [3]. Thus, a combined feedforward-feedback control
could be considered for closed-loop systems, though our
controller will use only feedback.

III. OUR MODEL: AN EXTENSION OF BERGMAN’S
MINIMAL MODEL

Some significant flaws with the Bergman model include its
sensitivity to variation in the p parameters and the fact that the
concentration of insulin in the plasma with respect to time must
be known [11]. The original version also examines only periods
of fasting.

Our model, which is an extension of Bergman's Minimal
Model, takes into account the effects of ingested glucose on
G(?) and incretins that are released during digestion on 1(¢) [5].
To account for the release of incretins, we use the insulin
appearance rate value, £ = 0.005 mU min-! ng-!, which was
used in a model of glucose-insulin dynamics by Brubaker et al.
and add the term & L(¢) to Bergman Equation (3) as in a paper
by Kabul et al., where L(?) is the concentration of incretins in
the biosystem in mU/L, resulting in (6) [4][5]. To account for
the effects of ingested glucose, we add Ru(f), the rate of
appearance of exogenous glucose in the blood in mg/min,
which will be simplified as a “pulse” function to represent the
entry of glucose after a meal, resulting in (4). The entry rate of
incretins to the system is also simplified as a “pulse” function.
This results in the following equations:
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A Simulink model was created based on these equations.

Fig. 2. Simulink block diagram for a healthy individual based on our extended
Bergman model. The whole diagram represents the biosystem, with no external

control.

We had insufficient information about the concentration of
incretins that would result from a given amount of ingested
glucose, thus we opted not to use our extended version of the
Bergman Minimal Model for the simulations. This was not
detrimental to our modeling of diabetes, however, as a spike in
G(?) during the simulation due to ingested glucose would have
complicated the results unnecessarily. The extended model is
simply a proof of concept that additional sources of glucose can
be accounted for during a simulation.

V. RESULTS OF SIMULATIONS

The following simulations were based on the Bergman
Minimal Model for three different patient-types: healthy, Type-I
diabetic, and Type-Il/gestational diabetic. It was assumed that
the patients did not ingest any additional glucose during the
simulation, so our original Bergman Minimal Model block
diagram was used to produce the simulated concentration
dynamics of G(¢) and I(¢).

Fig. 3 shows that in a healthy individual, glucose and
insulin concentrations display a clear exponential decay.
Glucose concentration begins at the designated Go value and
settles at a value of 90.264 mg/dL, close to the target value of
ps = 89.5 mg/dL. Likewise, insulin begins at /o and settles at
7.326 mU/L, which is close to the basal concentration I, = 7.3
mU/L.

One advantage of Bergman-based models is that the
parameters can be easily adjusted in order to simulate glucose-
insulin dynamics in individuals with glycemic disorders. For
individuals with Type-I diabetes, basal values of insulin are
very low and can be assumed to be 0 for the simulation. Since
there are no insulin dynamics, parameters p4 and ps can also be
set to 0 [2]. Basal glucose values are higher than in healthy
patients due to the lack of insulin production.
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Fig. 3. Results of Bergman model simulation for a healthy individual. The top
figure shows glucose dynamics, and the bottom figure shows insulin dynamics.

Type-II and gestational diabetics can display more
variability in their models, but generally have parameter values
that similarly reflect decreased sensitivity to insulin. For
example, p1 (glucose clearance rate) is typically lower than in
healthy individuals. Two new parameters @1 and @2 can be
introduced to represent pancreas sensitivity to insulin.
Equations (8) and (9) show ranges of these values for patients
with Type-II diabetes.
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Parameters for the diabetic simulations were chosen based
on values found in literature— normal and Type-I parameters
come from Friis-Jensen’s Modeling and Simulation of Glucose-
Insulin Metabolism, and Type-Il/gestational parameters come
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from Kartono’s study on the effects of physical exercise on
Type-II diabetes, which are shown in Table 1 and inserted in the
Bergman’s model [2][6].

Glucose Dynamics: Type-| Diabetes Insulin Dynamics: Type | Diabetes

oncentration (mU/L)

c
c

80 100 120 14 0 40 60 8 100 120 140 160 180 200
Time (minutes) Time (minutes)

Fig 4. Results of Bergman model simulation for an individual with Type-I
diabetes during fasting.
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Fig. 5. Results of Bergman model simulation for an individual with Type-II or
gestational diabetes.
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Fig. 6. Data from Kartono’s study shows similar dynamics for healthy and
Type 11 patients to our simulation results [6].

These results were compared to those from a study by
Kartono, assuming these results represent what a graph of
msulin and glucose regulation should look like. Overall, the
differences are slight. Below are the results from Kartono’s
study, which can be compared to our results with the results
from the Bergman Model shown in Fig. 3 and Fig. 5 [6].

Parameter ps, the target glucose level, is the expected
value, which was compared to the steady-state values of G(¢)
from the original Bergman model simulations. The healthy
patient model had a steady-state error of 0.85%, and the Type-II
patient model had a steady-state error of 6.78%. For insulin
concentration dynamics, the expected steady-state value is
determined by /5, the basal blood insulin concentration. The
healthy patient model had a steady-state insulin error of 0.36%,
and the Type-II patient model had an error of 1.13%.

These results, especially when compared against similar
models in the literature, imply that the original Bergman
models used here are fairly accurate representations of the
body’s self-regulation of its glucose levels. Because healthy and
Type-II patients produce and respond to insulin, G(7) settles

back fairly accurately to its target value after a given period of
time. It can be seen from Fig. 3 and Fig. 6 that the Type-II
glucose model has an increased time constant (as compared to
the healthy model) that slows its exponential decay. The
reduced sensitivity of Type-II patients to insulin means their
settling time is longer, and the higher steady state errors seen in
our simulations could be because the simulation was not run
long enough for the system to settle completely. For healthy
patients, 200 minutes was more than enough time to reach the
target determined by ps.

The Type-lI patient, who was assumed to produce
approximately O insulin, experienced no dynamic changes in
their G(¢) and I(¢) values, which remained at a constant Go =
200 mg/dL and I, = 0 mU/L, respectively. Therefore, the
steady-state errors for this model were technically 0.

V. PID CONTROL FOR DIABETIC PATIENTS

The following model includes PID-controlled IV insulin
delivery and was derived from the Bergman Model. It includes
an extension of glucose absorption from the gut in Equation
(10a), Gu(t), as well as IV insulin delivery in Equation (12)

[1].
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All of the above equations are linear except for Equation (10a),
which needed to be linearized in order for this model to be
accurate. Linearizing the equation about the basal glucose
concentration yields the equation below [10].

dG’ ,
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Note that in Type-I diabetics, there is no internal insulin
regulation, so the term ps [G(f) — ps] *t in Equation (6) is
omitted when we rewrite it as Equation (12). Note also that u(?)
denotes an exogenous supply of insulin from a pump.

It is assumed that the initial insulin concentration /o and
basal insulin concentration I, are 0 for a Type-I diabetic.
Performing the Laplace transform on Equation (12) and
rearranging to solve for /(s), as done in the paper by Ul-Hassan
et al., yields the equation below [1].

s I(s) = — pal(s) + u(s)
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A Laplace transform is then performed on (11) and (13) is
substituted for I(s).
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Lastly, a Laplace transform is performed on the linearized
version of Equation (10b), substituting Equation (14) for X(s).
sG(s)= —p1G(s) — GpX(s)+ Gpy(s)

= GpX(s) + Gp(s)
s + P
il — Gpp3u(s) + Gpy(s)
(s + pg)(s + p2)(s + pp)

G(s)=

(15)

The overall input to the biosystem is the exogenous insulin
supply u(s), and the output is glucose concentration G(s).
Therefore, the overall transfer function H(s) of the biosystem is
given by the ratio of G(s) to u(s). The G;,(¢) is omitted under
the assumption that the patient will not be exercising or
ingesting any glucose during the simulation [1].

Hs) = GG _ - Gppr3 (16)
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From this transfer function, it can be concluded that the
biosystem has poles at s = —ps4, —p2, and —pi [1]. Referencing
Table 1 in the appendix for the values from the uncontrolled
Type-1I diabetic simulation, the poles are then located at s =
-0.3, -0.02093, and -0.0287 min-!, respectively. This
system has all negative, real poles, indicating that the closed-
loop system is stable. The error function input to the PID
controller is defined as e(f) = Gumeas(f) - G(¢) (an inversion of
ordinary control action due to the diminishing effect insulin has
on glucose levels).

There are no simple, systematic ways to formulate
parameters for a third-order system, so K, and Ky were both set
to be 1 via trial and error, which resulted in a steady-state value
Gy = 82.5 mg/dL. Setting K; = 0.01 brought the steady-state
value much closer to the target, but made the system slightly
underdamped. By increasing K, = 5, this resulted in more of a
critically damped response.
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Fig. 7. Simulink diagram used to simulate a PID controlled insulin pump for
Type-I diabetic patients. The parameters for the biosystem are in Table 1.
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Fig. 8. The resulting glucose concentration dynamics from the simulation
represented in Fig.7. The simulation was run for 1000 minutes.

The target glucose concentration was set to 89.5 mg/dL.
Setting the PID parameters to the aforementioned values of K,
=35, Ki=0.01, and Ks = 1, the steady-state glucose value from
the simulation was found to be 88.83 mg/dL, resulting in a
0.74% error. With some more tuning, this small error may even
be reduced further, suggesting that PID control could be an
effective way to modulate the administration of an insulin
supply for a patient with Type-I diabetes.

This simulation could be used as an alternative to actual
physiologic experimentation because of how accurate we were
able to get our system to be. Although our simulation had small
steady state errors, the limitations of this are that starting values
are not always the same from patient to patient and insulin
sensitivity levels also vary from patient to patient. Additionally,
the concentration of insulin in the plasma with respect to time
must be known, which our simulation did not include. In order
for the simulation to be completely successful, our simulation
would have to take these into account.

VI. CONCLUSION

The Bergman Model was able to successfully model
insulin and glucose kinetics using differential equations. We
were able to integrate a PID controller to the system in order to
characterize the effects of an insulin pump on blood glucose
regulation. From the poles found from Equation (16) we saw
that our Simulink simulation was stable, indicated by all
negative poles. Based on our percent errors from all
simulations, healthy and diabetic patients, we showed that our
simulation had many benefits of use and much accuracy.
Although there were limitations to our simulation, we
determined that altering the Bergman Model and adding a PID
control shows a realistic representation of blood glucose levels.
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APPENDIX

TABLE 1: PARAMETER VALUES FOR ORIGINAL
BERGMAN MODEL SIMULATIONS [2][6]

Parameter

Healthy
Value

Type-1
Value

Type-I1
Value

Unit

Description

G(0)

287

200

287

[mg/dL]

Initial blood
glucose
concentration

X(0)

[min-1]

Initial effect of
active insulin

10)

403.4

403.4

[mU/L]

Initial blood
insulin
concentration

G

92

200

92

[mg/dL]

Basal blood
glucose
concentration

Iy

7.3

73

[mU/L]

Basal blood
insulin
concentration

0.03082

0.0287

0.02

[min-1]

Glucose
clearance rate
(independent of
insulin)

p2

0.02093

0.02093

0.025

[min-1]

Active insulin

clearance rate

(decrease of
uptake)

D3

1.062 x
10-3

1.062 x
10-3

109

[L/
(min2
mU)]

Increase in
uptake ability
caused by
insulin

pa

03

0.3

0.315

[min-1]

Decay rate of
blood insulin

89.5

89.5

89.5

[mg/dL]

Target glucose
level

13

0.3349
x 102

0.001

Ud L
[

Rate of
pancreatic
release after
glucose bolus
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