

Sudden Cardiac Death Prevention Using a Pacemaker

Erin Barry, Callie Cheung,
Anjelica Nojadera, & Shan Vo

MOTIVATION

- Cardiac pacemaker as prevention for sudden cardiac death (SCD)
- More than 7,000 children and teens in the U.S. die from SCD
- Prevent SCD due to bradyarrhythmias, torsade de pointes, etc.
- Permanent pacing
- Heart rate PID controller

INTRODUCTION

- Pacemaker composed of two functional units
 - “Sensing circuit”
 - “Output circuit”
- Error signal
- PID controller parameters
 - Proportional gain
 - Integral gain
 - Derivative gain

$$\begin{aligned}C(s) &= K_p + \frac{K_i}{s} + K_d s \\&= K_p \left(1 + \frac{1}{T_i s} + T_d s\right) \dots\dots (1)\end{aligned}$$

• • •

PERFORMANCE GOALS & CONSTRAINTS

Goals:

- Control abnormal heart rate with a pacemaker and understand how an error signal (desired/set vs actual heart rate) is controlled by a PID to stimulate the heart

Constraints:

- Closed loop system

PACEMAKER SIGNALING PROCESS

BLOCK DIAGRAM (TIME DOMAIN)

Figure 1: Block diagram of Heart Rate Controller for Cardiac Pacemaker

$G_p(s)$ = Transfer function of Pacemaker

$G_c(s)$ = Transfer function of controller

$G_H(s)$ = Transfer function of Heart

$R(s)$ = Actual heart rate

$H(s) = 1$

$Y(s)$ = Desired heart rate

ASSUMPTIONS:

- Simulink model and its pacing through the block diagram are assumed to have a continuous signal
- Transfer function of the Pacemaker is a low pass filter transfer function
- Pacemaker assumes average heart rate would be between 50 to 70 beats per minute
- Individuals with pre-existing conditions

ADVANTAGES & LIMITATIONS

Advantages:

- Using a PID controller - takes error as an input signal and adjusts the process control inputs by minimizing error
- Pacemaker allows people with heart defects to live longer

Limitations:

- Pacemaker can only last up to 8.5 years
- Some natural added noise within the body could affect the measured heart rate
- Assuming heart rate is a certain value (different for certain ages/gender)

NEXT STEPS

- Incorporate transfer functions into design
- Take the Laplace transform of our transfer functions to run the simulink in the Laplace domain
- Fully develop the simulink model and implement ECG data of an individual with cardiac issues

THANKS FOR LISTENING!

CREDITS: This presentation template was created by Slidesgo, including icons by Flaticon, and infographics & images by Freepik and illustrations

REFERENCES

1. https://www.researchgate.net/publication/266010590_Intelligent_Heart_Rate_Controller_for_Cardiac_Pacemaker
2. <https://www.mathworks.com/help/dsp/ug/real-time-ecg-qrs-detection.html>
3. <https://acadpubl.eu/hub/2018-119-15/1/9.pdf>
4. http://dsp.vscht.cz/konference_matlab/MATLAB12/full_paper/050_Lukac.pdf
5. <https://dke.maastrichtuniversity.nl/westra/PhDMaBa-teaching/GraduationStudents/Ba/maartenvaessenBa2005FINAL.pdf>
6. https://www.researchgate.net/figure/Transforms-used-in-the-study-of-biomedical-signal-processing_tbl1_330779514
7. <https://www.mathworks.com/help/wavelet/ug/r-wave-detection-in-the-ecg.html>
8. <https://www.mathworks.com/help/wavelet/ug/code-generation-for-a-deep-learning-simulink-model-to-classify-ecg-signals.html>