Sudden Cardiac Death Prevention Using a Pacemaker

Erin Barry, Callie Cheung, Anjelica Nojadera, & Shan Vo
MOTIVATION

- Cardiac pacemaker as prevention for sudden cardiac death (SCD)
- More than 7,000 children and teens in the U.S. die from SCD
- Prevent SCD due to bradyarrhythmias, torsade de pointes, etc.
- Permanent pacing
- Heart rate PID controller
INTRODUCTION

- Pacemaker composed of two functional units
 - “Sensing circuit”
 - “Output circuit”
- Error signal
- PID controller parameters
 - Proportional gain
 - Integral gain
 - Derivative gain

\[C(s) = K_p + \frac{K_i}{s} + K_d s \]
\[= K_p (1 + \frac{1}{T_i s} + T_d s) \ldots (1) \]
PERFORMANCE GOALS & CONSTRAINTS

Goals:

- Control abnormal heart rate with a pacemaker and understand how an error signal (desired/set vs actual heart rate) is controlled by a PID to stimulate the heart

Constraints:

- Closed loop system
PACEMAKER SIGNALING PROCESS

- ECG signal
- Target Time Interval
- Pacemaker
 - Target time interval < 0 → Speed up
 - Target time interval > 0 → Slow down
- PID Controller
- Target - New time interval = error
ASSUMPTIONS:

- Simulink model and its pacing through the block diagram are assumed to have a continuous signal
- Transfer function of the Pacemaker is a low pass filter transfer function
- Pacemaker assumes average heart rate would be between 50 to 70 beats per minute
- Individuals with pre-existing conditions

Figure 1: Block diagram of Heart Rate Controller for Cardiac Pacemaker

- $G_p(s) = \text{Transfer function of Pacemaker}$
- $G_c(s) = \text{Transfer function of controller}$
- $G_H(s) = \text{Transfer function of Heart}$
- $R(s) = \text{Actual heart rate}$
- $H(s) = 1$
- $Y(s) = \text{Desired heart rate}$
ADVANTAGES & LIMITATIONS

Advantages:

- Using a PID controller - takes error as an input signal and adjusts the process control inputs by minimizing error
- Pacemaker allows people with heart defects to live longer

Limitations:

- Pacemaker can only last up to 8.5 years
- Some natural added noise within the body could affect the measured heart rate
- Assuming heart rate is a certain value (different for certain ages/gender)
NEXT STEPS

• Incorporate transfer functions into design
• Take the Laplace transform of our transfer functions to run the simulink in the Laplace domain
• Fully develop the simulink model and implement ECG data of an individual with cardiac issues
THANKS FOR LISTENING!

CREDITS: This presentation template was created by Slidesgo, including icons by Flaticon, and infographics & images by Freepik and illustrations.
REFERENCES

1. https://www.researchgate.net/publication/266010590_Intelligent_Heart_Rate_Controller_for_Cardiac_Pacemaker
5. https://dke.maastrichtuniversity.nl/westra/PhDMaBa-teaching/GraduationStudents/Ba/maartenvaessenBa2005FINAL.pdf