

Luteinizing Hormone Dynamics in Menstruation

Irene Lee, Swathi Prabhu, Meenakshi Singhal, Alice Tor

TABLE OF CONTENTS

O1 INTRODUCTION

larger control system of
menstruation, subsection of LH

O2 DERIVATIONS

kinetic eqns; ODEs; inputting
parameters to derive transfer fn

O3 MODEL ANALYSIS

block diagram; output responses;
bode plot; stability; applications

01

INTRODUCTION

control system of
menstruation,
subsection of LH

Background

Figure 1: demonstrates the complexity of hormone control during different stages ([Draper et al.](#))

System: Menstruation

cyclic shedding of uterine layer

- multiple stages
- feedback dictated by hormones
 - stage latency
 - intensity

Modeling: Luteinizing Hormone (LH)

glycoprotein hormone

- stimulates:
 - ovulation: release of egg from follicle
 - corpus luteum: production of progesterone to sustain pregnancy
 - estradiol production
- model can identify:
 - downstream effects
 - therapeutic targets

O2

DERIVATION

kinetic equations; ODEs; transfer function

$$F(s) = \int_0^{\infty} e^{-st} f(t) dt.$$

Kinetic Equations and ODEs

receptor-hormone complex dynamics

*eqn of interest: binding necessary for signal transduction and downstream processes

(↑ binding = ↑ physiological effects)

Redefining Parameters

terms

$$a(t) = R_{LH} = [LH_{receptor}]$$
$$b(t) = R_{LH,des} = \text{desensitized complex}$$
$$c(t) = [LH_{blood}]$$
$$d(t) = LH\text{-}R = [LH_{hormone-receptor complex}]$$

rate constants

$$x = k^{LH}_{recy} = \text{free } LH_{receptor} \text{ formation rate}$$
$$y = k^{LH}_{on} = \text{hormone to receptor binding rate}$$
$$z = k^{LH}_{des} = LH_{receptor} \text{ desensitization rate}$$

Transfer Function

input

$$\underline{c(t)} = LH_{\text{blood}}(t)$$

equations

$$\begin{aligned}sA(s) - a_0 &= xB(s) - ya_0C(s) - yc_0A(s) \\ sD(s) - d_0 &= ya_0C(s) + yc_0A(s) - zD(s) \\ sB(s) - b_0 &= zD(s) - xB(s)\end{aligned}$$

output

$$\underline{d(t)} = LH-R(t)$$

transfer relationship:

$$(s + z - \frac{(yc_0xz)}{(s+yc_0)(s+x)})D(s) - (d_0 + \frac{yc_0xb_0}{(s+yc_0)(s+x)} - \frac{yc_0a_0}{s+yc_0}) = (ya_0 + \frac{y^2c_0a_0}{(s+yc_0)})C(s)$$

Transfer Function

assumptions

- **linearization:** assume that $a(t)$, the concentration of free LH receptors, and $d(t)$, the concentration of LH-receptor complex, are linear for small signals around the steady-state operating point
- **initial conditions:** assume that initial conditions for $a(t)$, $b(t)$, and $d(t)$ are negligible

transfer relationship with assumptions:

$$(s + z - \frac{(yc_0 xz)}{(s+yc_0)(s+x)})D(s) = (ya_0 + \frac{y^2 c_0 a_0}{(s+yc_0)})C(s)$$

transfer function $D(s)/C(s)$:

$$tf = \frac{(ya_0 (s + yc_0) - y^2 a_0 c_0) (s + x)}{(s+2)(s+x)(s+yc_0) - yc_0 xz}$$

03

MODEL ANALYSIS

block diagram; output response; bode plot;
stability; applications

Transfer Function Response

- observe: *given assumptions*, $d(t)$ decreases over time

BLOCK DIAGRAM

input: $c(t) = \text{LH}_{\text{blood}}$

output: $d(t) = \text{LH-R}$

OUTPUT RESPONSE

constants

$LH_{free\ receptors}$ formation rate : $X = K^{LH}_{recy} = 68.9491/\text{day}$
 $LH_{receptor}$ binding rate: $Y = K^{LH}_{on} = 2.143 \text{ L/day}\cdot\text{IU}$
 $LH_{receptor\ complex}$ desensitization rate: $Z = K^{LH}_{des} = 183.36/\text{day}$
 $LH\text{-}R}(t)$ initial value: $A_0 = 7.304 \text{ nmol/L}$
 $R_{LH,des}$ initial value: $B_0 = 1.5032 \text{ nmol/L}$
 $LH_{blood}(t)$ initial value: $C_0 = 6.619 \text{ IU/L}$

- **observe:** $d(t) = [LH_{hormone-receptor\ complex}]$ saturates quickly

Output response $d(t)$ with parameter perturbation

$a(t) = [\text{LH}_{\text{receptor}}]$

$c(t) = [\text{LH}_{\text{blood}}]$

Output response $d(t)$ with parameter perturbation

k^{LH}_{on} = LH to receptor binding rate

k^{LH}_{recy} = free LH receptor formation rate

OUTPUT RESPONSE

$$\begin{aligned}\frac{d}{dt}R_{LH}(t) &= k_{recy}^{LH} \cdot R_{LH,des}(t) - k_{on}^{LH} \cdot LH_{blood}(t) \cdot R_{LH}(t) \\ \frac{d}{dt}LH-R(t) &= k_{on}^{LH} \cdot LH_{blood}(t) \cdot R_{LH}(t) - k_{des}^{LH} \cdot LH-R(t) \\ \frac{d}{dt}R_{LH,des}(t) &= k_{des}^{LH} \cdot LH-R(t) - k_{recy}^{LH} \cdot R_{LH,des}(t)\end{aligned}$$

Original ODEs

- observe: $d(t)$ ([LH hormone-receptor complex]) saturates to a certain point then oscillates due to the parameter values
- Demonstrating underdamping
- One full day

BODE PLOT

constants

$LH_{free\ receptors}$ formation rate : $X = K^{LH}_{recy} = 68.9491/\text{day}$

$LH_{receptor}$ binding rate: $Y = K^{LH}_{on} = 2.143 \text{ L/day} \cdot \text{IU}$

$LH_{receptor\ complex}$ desensitization rate: $Z = K^{LH}_{des} = 183.36/\text{day}$

$LH\text{-}R(t)$ initial value: $A_0 = 7.304 \text{ nmol/L}$

$R_{LH,des}$ initial value:

$LH_{blood}(t)$ initial value:

$B_0 = 1.5032 \text{ nmol/L}$

$C_0 = 6.619 \text{ IU/L}$

plug into tf:

transfer function:

$H =$

$$-206.4 \text{ s} - 15086$$

$$-----$$
$$s^3 + 266.5 \text{ s}^2 + 1.622e04 \text{ s} - 2.6$$

Continuous-time transfer function.

System Stability

Under current assumptions:

- Negative Phase Margin → *system will be less stable when the loop is closed*
- No positive real pole components → *system is stable*
- Complex factors → *system is underdamped*

To simplify, assume that constant term in the denominator of the original equation is negligible because it is 2 orders of magnitude smaller than other terms

simplified transfer fxn:

$H_2 =$

$$\frac{-206.4 s - 15086}{s^3 + 226.5 s^2 + 1.622e04 s}$$

factored: $= s (s + 113.3 + 58.3j) (s + 113.3 - 58.3j)$

simplified bode plot

MODEL APPLICATIONS

therapeutics

Acquiring data on cycle latency for menstrual disorders

diagnosis

Diagnosing pituitary disorder, anorexia, malnutrition

pregnancy

Determining pregnancy based on LH peak latency

fertility

Monitoring cyclic ovulation for family planning

menopause

Tracking onset of menopause

future research

Contributing to underserved body of knowledge on women's health

THANK YOU!

Thanks to Professor Cauwenberghs and the TAs for
your support this quarter!

References

Draper, C. F., et al. "Menstrual Cycle Rhythmicity: Metabolic Patterns in Healthy Women." *Scientific Reports*, vol. 8, no. 1, 1 Oct. 2018, www.nature.com/articles/s41598-018-32647-0, 10.1038/s41598-018-32647-0

Howards, Penelope P, et al. "Timing Clinic Visits to Phases of the Menstrual Cycle by Using a Fertility Monitor: The BioCycle Study." *ResearchGate*, Oxford University Press (OUP), Nov. 2008, www.researchgate.net/publication/23441657_Timing_Clinic_Visits_to_Phases_of_the_Menstrual_Cycle_by_Using_a_Fertility_Monitor_The_BioCycle_Stud.

Nedresky, Daniel, and Gurdeep Singh. "Physiology, Luteinizing Hormone." Nih.gov, StatPearls Publishing, 28 Sept. 2021, www.ncbi.nlm.nih.gov/books/NBK539692/.

"Luteinizing Hormone (Blood) - Health Encyclopedia - University of Rochester Medical Center." Rochester.edu, 2021, www.urmc.rochester.edu/encyclopedia/content.aspx?ContentTypeID=167&ContentID=luteinizing_hormone_blood.

Röblitz, Susanna, et al. "A Mathematical Model of the Human Menstrual Cycle for the Administration of GnRH Analogues." *Journal of Theoretical Biology*, vol. 321, Mar. 2013, pp. 8–27, www.sciencedirect.com/science/article/abs/pii/S0022519312005954?via%3Dihub, 10.1016/j.jtbi.2012.11.020