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Abstract - This study explores the natural control system in
the body for responding to exposure to the Influenza A virus.
More specifically, it delves into the development of a model
to simulate the responses of target uninfected cell counts,
infected cell counts, and viral titers. There are two particular
models of interest: a delayed model that incorporates the
brief inactive period for newly infected cells, and a
non-delayed model reflecting only infected cells without
delay after initial infection. Both models are commonly used
in the literature and the benefits of each model are studied
and explained. We generate Simulink models for both the
delayed and non-delayed sets of ordinary differential
equations (ODEs) to simulate responses to different viral
titer impulses. Additionally, this study aims to extrapolate
these models to the case for a vaccinated individual. To do
this, we modify the viral clearance rate and infected cell
death rate of our initial model to account for the improved
immune response generated by vaccines.

I. INTRODUCTION

Influenza A is a leading cause of lower and upper
respiratory tract infections and causes a significant amount of
morbidity and mortality. This strain alone causes upwards of 15
million respiratory infections and 200,000 hospitalizations on a
yearly basis. [1-5] Additionally, the weaker immune responses of
the elderly leads to over 36,000 deaths due to the flu virus or its
complications, which may include bacterial pneumonia, sinus
infections, and worsening of existing medical conditions such as
asthma. [3,5] Additionally, the flu can temporarily make
someone significantly more susceptible to other infections,
usually bacterial or other viruses. These issues all contribute to
the flu season’s high annual cost of over 10 billion dollars. [6]
Currently, vaccinations are the best way to help prevent and fight
infection, but with the great number of different strains, the
constant emergence of new strains, and the poor efficacy of
current antiviral treatments, the virus is always difficult to deal
with. [1-4] The impact of constantly changing strains can be
seen as recently as 2009 with the Swine Flu Pandemic. Although
the general immune response is understood, the rapid kinetics of
the virus still is not fully understood. [5,7]

The two most widely used models for flu viral kinetics are a
group of four and three ODEs, respectively, that track the
populations: target (epithelial) cells (T), infected cells (I), and
viral titers (V). [2-8] Target cells are epithelial cells, cells that
line surfaces within the body, that are uninfected, which means
they are susceptible to viral infection. The infected cells are the
epithelial cells that the virus has attached to, and are being used
to produce more virus until the cell dies. Viral titer is the

concentration of virions in the bloodstream. The four ODE
model (Delay Model) tracks two classes of infected cells (I1 and
I2) in which I1 represents the idle infected cell, and I2 represents
the virus producing infected cell. The Delay model is considered
more biologically accurate as this accounts for the delay between
becoming infected and being able to produce more virions.
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The three ODE model (Non Delay Model) ignores this
incubation period between the transition of group 1 infected cells
to group 2, and considers only one population of infected cells,
in which they are able to spread virus as soon as infection
occurs.
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These models also have the values p, the rate of viral titer
increase, δ, the rate of infected cell death, β, the infection rate
constant, and c, the body’s viral clearance rate. Target cells
become infected at a rate of βV per cell, and undergo an
incubation period called the eclipse phase before being able to
produce and spread more virus. The average lifetime of the
infected cells is estimated to be 11 hours, and the half life of a
free infectious cell is roughly 3 hours. [5] It is estimated that a
single infected cell can produce over 22 productive infections.
[5] The model is effective at predicting the dynamics of
influenza infection based on target epithelial cells as this is the
infection’s limiting factor, but is limited by its ability to properly
consider varying host responses to viral infection.
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The R0 value is the basic reproductive number. Its value
represents the average number of second generation infections
created by a single infected cell in an environment of healthy,
susceptible cells. [5] The value determines whether or not an
infection will establish itself or die off quickly. If R0 is greater
than 1, more second generation cells will be created to replace
the infected cell as it dies, which keeps spreading the infection
and lets it establish itself in the susceptible population. If R0 is
less than 1, not enough second generation cells will be generated
to replace the infected cell as it dies, letting the infection die off
rapidly. The equation applies to both the delayed and
non-delayed models.

II. METHODS

Figure 1: Delay Simulink Model

Figure 2: Non Delay Simulink Model

Several assumptions must be made for the current model:

1. The ODEs generated from experimental data in the
literature are valid for modeling the influenza A virus
infection

2. No regeneration of target uninfected cells
3. Infected cells are active immediately

4. Viral clearance rate, infected cell viral shedding, and
infected cell death rate are constant

5. Initial target uninfected cells is consistent between
patients and represents number of cells in the lungs

6. Exposure to the virus can be modeled with an impulse
in viral titers V(t)

7. Receiving a vaccination can be modeled by increasing
viral clearance rate and infected cell death rate

These assumptions help simplify our model in order to
create a Simulink model of the system. The models are identical
except for the differentiation between Ii and I2 that adds the delay
between infection and the ability to infect others.

The transfer function of the Non Delayed model was also
derived in order to better understand the input versus output
response. The Non Delayed model was chosen as the equations
are slightly simpler while still maintaining the same effective
response and because the model more accurately simulates the
expected responses to a viral titer impulse.
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These linearized equations were generated using Taylor
polynomials of the original ODEs. The SS subscript represents
steady state values for the specific variables and the variables
themselves represent the linearized version, not the original
version.
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We took the Laplace transforms of all of the linearized
ODEs and used the resulting equations to determine our transfer
function.
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The transfer function contains steady state values of the
variables for target uninfected cells and viral titers. We were
unable to find Bode responses in the literature so we could not
determine these values. Experimental data is required to



determine steady state values so we were unable to generate our
own Bode response within this study.

III. RESULTS

Figures 3-6 show the graphs for T(t), V(t), and I(t). T(t)
represents the number of uninfected target cells. V(t) is the
amount of infectious viral titer. I(t) represents the amount of
infected cells that also have the ability to infect other cells. In the
delayed model, I1(t) is the amount of idle infected cells while
I2(t) is the amount of productively infected cells.

Figure 3: c = 3, δ = 4, R0 = 10.8, V0 = 9.2E-2 (Literature Values)

Figure 4: c = 3, δ = 4, R0 = 10.8, V0 = 9.2E-6 (Low Exposure
Case)

Figures 3 and 4 show two cases where the infection will
establish itself in the body because the R0 value is greater than 1.

The difference is in V0. the initial amount of viral titer. In the
case of Figure 3, we used average values of several subjects
from our literature research as approximations for c and δ. With
a lower amount of initial viral titer, Figure 4 shows that the
infection takes longer to establish itself, taking 4 days instead of
3 for the infection to peak in the non-delayed model and 7 days
instead of 5 days in the delayed model. Both models show T(t)
drops to zero as the infection establishes itself and infects all
available target cells. V(t) and I(t) both rise as the infection
spreads, but then the infected cells die and viral titer is cleared
and both values drop to zero. In both figures, the delayed model
shows how I2(t) rises and falls slightly after I1(t) as the infected
cells exit their idle stage and are able to infect other cells.

Figure 5: c = 11, δ = 12, R0 = 0.98, V0 = 9.2E-2 (“Vaccinated”
Case)

Figure 6: c = 11, δ = 12, R0 = 0.98, V0 = 9.2 (“Vaccinated” High
Exposure Case)



Figures 5 and 6 show the case where the R0 value is less
than 1, so the infection will rapidly die out as not enough second
generation infections are made. Both test cases here are
modeling a vaccinated individual, so the c and δ values are both
higher because viral clearance and viral death rate are presumed
to be higher. Different values for initial viral titer, V0, are also
used to illustrate how effective a vaccine can be, even in the case
of high exposure with a high initial viral titer value. T(t) is
relatively untouched in both cases, and when zooming in we can
see that there is a very minor decrease in the value of T(t) that is
irrelevant with respect to the high magnitude of T(t). V(t) and
I(t) see similar patterns as the infection does not have enough
reproductive power to establish itself, so there is never a
significant peak in either graph. At most, the infections are
eliminated in less than a day.

IV. CONCLUSION

Based off of our results, we conclude that both the delayed
and non-delayed models can be used to accurately model the
spread of an Influenza A viral infection. We determined that the
non-delayed model produces peaks for infected cell count and
viral titer that more closely resemble the actual experimental
peaks determined in the literature. Due to this result, we opt to
use the non-delayed model over the delayed model. Additionally,
while the delayed model is a more accurate biological model, the
use of an extra parameter results in failure to pass statistical
validity tests [1].

After determining the preferred model, we aimed to extend
the model to simulate the response in a vaccinated individual.
Looking at the results in figures 5 and 6, we note that by
reducing R0 to less than 1, the virus fails to spread effectively.
We argue that this is a valid model of a vaccinated case since the
antibodies produced via vaccinations serve to increase both viral
clearance rate and infected cell death rate. Inspection of our
models for both the vaccinated and unvaccinated cases reveals
the importance of developing fast and strong immune responses
to viral infections through the use of vaccines. If R0 is not less
than 1, we see a rapid spread of the virus even at low exposures.

It is important to note that our unvaccinated case represents
a healthy immune response to the Influenza A virus. An
immunocompromised system would likely react even less
efficiently in clearing the virus and eliminating infected cells
(reduced value for c and δ). This would result in a much faster
response to an impulse exposure in V(t) and a slower decay in
both I(t) and V(t).

Given our initial set of ODEs for the non-delayed model, we
were able to linearize the equations and determine a transfer
function. However, the literature does not go into Bode
responses for these models and we are unable to determine
steady state values for our linearized equations. For this reason,
we were unable to generate our own Bode responses. We are not
particularly concerned with the frequency response of our

system since exposure to the Influenza A virus is modeled using
an impulse response.

Overall, our model successfully models the case of an
Influenza A viral exposure and spread for a healthy but
unvaccinated individual. Slight modifications to our constants
allow us to extrapolate our model to a vaccinated or
immunocompromised case, but we have not determined the
accuracy of these models. They respond as expected based on
our R0 values, but the timing of the responses may not accurately
reflect the real life viral spread rate. Further study is required to
confirm if our model can be used for these more specific cases.
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