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Abstract— In recent years, robotic surgery and robotic-
assisted surgery (RAS) has become popularized as a means of
performing surgery that accounts for limitations in conventional
surgical methods and introduces robot-enhanced approaches.
However, one known issue that arises with the use of robotic
arms is unwanted oscillations due to certain material properties
of the components of the machine, such as stiffness. Thus, it is
critical that the information input by the operator (i.e. surgical
motions) is relayed properly to the robot, and that appropriate
information is relayed back to the operator to replicate a
conventional surgical environment. In this project, we aim to
examine the controller-arm system, wherein the input is the
operator’s movement and the output is the arm movement, and
design a PID controller that will help greatly reduce steady state
error, remove any oscillations, and have a fast response while
maintaining stability.

I. INTRODUCTION

A. Robotic-Assisted Surgery

Robotic-assisted surgery (RAS) encompasses a broad
range of procedures in which robotic arms functioning as
surgical instruments are tele-controlled by a surgeon either
through tele-manipulation or computer control. RAS has
advanced rapidly in the past couple of decades, allowing
surgeons to surpass the limitations of traditional surgical
procedures by improving dexterity, precision, and accuracy
of movement as well as increasing accessibility to harder
to reach areas in the body while decreasing disruption of
surrounding areas. The growing popularity and prevalence of
these robotic procedures can be attributed to the increased
demand and diversification of minimally invasive surgery
techniques. RAS has allowed for many common surgeries
to be much more minimally invasive, resulting in increased
recovery rates and times as well as decreased scarring and
pain for patients.

In general, RAS incorporates three components: the
robotic instrument, the processing equipment, and the control
console used by the surgeon to command the robot [1].
Depending on their intended application, these robotic instru-
ments can vary widely in complexity, differing in the types
and amounts of joints, the allowable degrees of freedom
(DOF) of those joints, the end effector used to interact with
the contact environment, and the workspace size. Controlling
a robot to move to desired positions or provide desired
force outputs has many inherent sources of error, such as
oscillations due to momentum or material properties of the
robotic links [2]. For RAS, an important additional source
of error to account for as the contact environment changes
from hard, solid, and static surfaces to soft, flexible, and
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unfixed surfaces such as biological tissues is how the contact
environment will react to the manipulation. Surgical contact
environments often involve different biological tissue types
with different mechanical properties such as nonlinearity
and elasticity, which cause them to produce reactive force
when subject to applied forces. While the design of a
robot for RAS is constrained by aspects such as material
biocompatibility, engineers can still manipulate properties of
the robot to make them highly optimized. In comparison,
we have very limited capabilities to change the properties of
the contact environments to increase workability. However,
we do have the ability to control how the robot behaves as
it interacts with the contact environment. Thus, to account
for possible sources of error from both the robotics and
contact environment in real time, and assuming the robot
is well suited for the application and controlled by a well
trained surgeon, force and position feedback control must be
implemented.

Since these robots are implemented in such a delicate
and sterile environment, force outputs must be accurate and
precise enough to be deemed safe and efficient. This requires
appropriate force applications and positioning relative to
a defined contact environment such as the soft tissue of
humans. This, however, poses issues because soft tissues are
not purely solid, static, or perfectly elastic, making proposed
models limited in what they can predict in the operating
room. Additionally, robotic systems are limited as surgeons
cannot feel the intricate environment they are working in
nor the robotic effect on the soft tissue which traditionally
informs surgeons on how to change their course of action.
This suggests the potential improvement of modeling robotic
systems in surgery through the inclusion of haptic or tactile
feedback to reduce errors associated with the robotic move-
ment.

II. BIOSYSTEM

A typical RAS system can be modeled as several key
components, which are summarized in Figure 1. The surgeon
inputs a motion and force which is sent to the master
manipulator, commanding the patient-side manipulator to
interact with the patient. In return, the force and tissue
properties provide tactile and force information to the tactile
display/master manipulator, which gives a kinesthetic and
cutaneous sense to the surgeon. In addition, an endoscope
outputting video data to a graphical display provides visual
feedback for the surgeon.

Our project focuses on the interaction between the robot
end-effector and the patient, specifically the force feedback
system that allows for the end-effector to exert a desired



Fig. 1. Schematic diagram of a typical RAS system. Important components
include the motion commands given by the master manipulator and the force
information being returned by the patient-side manipulator. Adapted from
[3]

Fig. 2. Time-domain diagram of the force response at different stages of
contact, where a) is before contact, b) is initial contact, and c) is stable
contact. Adapted from [4]

force input by the surgeon. The components of this system
include the robot arm mechanics, the contact environment
behavior, and a controller to minimize output error and/or
oscillations. In the operating room, this is critical for ensuring
that the end-effector does not exert unnecessary forces upon
the contact environment. Figure 2 shows the force output
of the end-effector when contact is initiated, with steadily
decaying oscillations occurring from the time of contact until
stability is reached. These initial oscillations are undesired
force outputs, and thus need to be reduced or removed using
a controller.

In addition to force control, there is also an internal posi-
tion feedback loop for the robot arm mechanics. Accounting
for the position of the end-effector is equally important as
the force, as position feedback can ensure that the surgeon
is operating on the correct locations for a given tissue.
Such position feedback is even more important if the area
of interest is relatively small, requiring minute and precise
surgical actions. It is important to note that there are a
few operational constraints, mainly how generated force and
position values are limited by the base programming and
mechanics of the robot. That is, there is a physical limitation
to how quickly and precisely the end-effector is able to be
adjusted.

III. METHODS

A. Key Assumptions

In order to simplify the modelling and simulation process,
several key assumptions have been made. Firstly, we assume
that the robotic end-effector has only one translational degree
of freedom, such as a needle moving vertically perpendicular
to the tissue. We will also assume that the robot arm can be
modelled using a mass-spring-damper system [4]. While this

might be less appropriate for a system with multiple degrees
of freedom, this model fits under the previous assumption.
For the contact environment that the end-effector interacts
with, we assume that it is a static, viscoelastic, homogeneous,
and isotropic soft tissue. In regards to the overall system
model, measurements of the output force will be treated
as ideal with no time delay in the measurements. This
simplification makes it easier to simulate the system; in
reality measurement delay would have a notable impact on
the system output and require different controller tuning.
In a similar vein, we assume that the initial conditions
are zero, where the end-effector is in contact with the
environment but no force is applied. Finally, we assume
that the surgeon/operator must input slow movements (i.e.
low frequency changes) with low force values, meaning our
domain of interest is within small frequencies and forces.

B. Mathematical Modelling

The simplification of the robot arm to a mass-spring-
damper system is derived as follows. Firstly, the relationship
between position and velocity can be expressed as shown
in Eq. 1. In addition, the sum of forces on the mass are
accounted for in Eq. 2, which shows the influence of the
spring, damper, and any external forces where γ is the
damping constant, k is the spring constant, and m is the
mass.

du

dt
= v(t) (1)

m
dv

dt
= −γv(t)− ku(t) + f(t) (2)

Using both equations results in a single second-order
differential equation (3), which, after applying a Laplace
transformation, results in the transfer function (4) where the
input and output are force and position, respectively.

m
d2u

dt2
= −γ

du

dt
− ku(t) + f(t) (3)

U(s)

F (s)
=

1

ms2 + γs+ k
(4)

Unfortunately, no explicit parameters regarding robotic
mechanisms for this model were found in current literature.
While there seemed to be a few related values in papers
regarding robot arm modelling, it was difficult to find any-
thing that matched our system. Thus, we made an educated
guess and set γ = 100 Ns/m, k = 300 N/m, and m = 0.01 kg
(approximately the mass of a hypodermic needle).

As for the contact environment, the viscoelasticity of soft
tissue is traditionally represented through a variety of spring-
damper systems. For this project, we opted for the Kelvin-
Boltzmann model, which was found to be best representative
of a dynamic soft tissue force response in a study by Morieria
et. al regarding soft tissue force control [5]. The Kelvin-
Boltzmann model (5) contains two springs and one damper,
expressed through the parameters α, β, and γ (6).

F (t) = βx(t) + αẋ(t)− γḞ (t) (5)



Fig. 3. SIMULINK block diagram of the overall system, where (1) is the
PID controller, (2) is the robotic arm mechanics, and (3) is the soft tissue
mechanics.

α = b
k2

k1 + k2
, β =

k1k2
k1 + k2

, γ =
b

k1 + k2
(6)

β is best representative of the tissue stiffness, and α,
γ are both related to tissue viscosity. By performing a
Laplace transform on (5), a transfer function for the Kelvin-
Boltzmann model can be obtained (7), where the input and
output are position and force, respectively:

F (s)

X(s)
=

1 + γs

β + αs
(7)

Values for the soft tissue model were also obtained from
the study by Morieria et. al, which were experimentally
determined using beef as the tissue of choice. In this case,
α = 27.2 Ns/m, β = 190.2 N/m, and γ = 0.0345 s. While
these parameters are appropriate given our assumptions (i.e.
examining interaction with any soft tissue in general), it is
important to note that a more specific scenario would re-
quire different parameters to be more accurate. Furthermore,
because we have assumed that the contact environment is
homogeneous, we are not considering differences in tissue
composition. Human skin, for example, is layered with
tissues that vary in their physical properties that would need
to be accounted for in a more robust simulation.

C. SIMULINK

In accordance with our prior description of the biosystem
of interest for this project, a block diagram representing
all of the components of the biosystem was generated in
SIMULINK (Figure 3). The force input, Fd, is modeled as
a step function and compared with the measured force, Fm;
the resulting difference is fed into the PID controller. This
force is then input into a system representing the robot arm
mechanics, which outputs a resulting position for the arm.
Note that there is a position feedback loop that works by
converting the output position into a force by deriving the
position into a velocity and multiplying it with a damping
coefficient in units of Ns/m.

The position output generated by the robot arm then acts
as the input for the soft tissue mechanics (Kelvin-Boltzmann
model), yielding a final measured force Fm that acts as
the overall force feedback loop as mentioned earlier. Values
for the PID controller were determined using the built-in
SIMULINK PID tuner, which yielded values of KP = 2.092,
KI = 12.64, and KD = -0.0229. As per the assumptions
mentioned previously, the force inputs that we tested for were
kept at low values: Fd= 0.1 N, 0.5 N, and 1 N. Afterwards,

Fig. 4. System force response for varying force input values. Dashed
lines indicate the desired steady-state value Fd, and each curve represents
the measured force, Fm. a) shows the force responses for the closed-loop
system with PID control, whereas b) shows the responses when PID control
is removed.

a frequency response analysis was performed by plotting a
bode diagram using the SIMULINK linearization toolbox.

IV. RESULTS AND ANALYSIS

A. Time-domain Response

Running the SIMULINK simulation for different small-
value forces resulted in the outputs summarized in Figure
4a. All curves appear to be similar in behaviour, with no
oscillations and minimal overshooting. More importantly,
compared to Figure 4b, the steady-state gain error has been
greatly reduced with the inclusion of the PID controller.

While the steady-state errors without PID control (Figure
4b) are at 61.2%, adding a PID controller drastically reduces
the percent error to 0.01%. Visually, there does not seem to
be a large difference in settling time between the two cases.
There is some overshoot present before the force reaches
steady-state with the PID controller; however, the percentage



Fig. 5. Bode diagram of the closed-loop system.

overshoot is only 1.74%. Thus, from the perspective of the
force response, the closed-loop can be considered stable.

B. Frequency Response

Because we are only concerned with low-frequency
changes in the input force, the bode plot (Figure 5) is
examined at a range of 10−1 rad/s to 103 rad/s. Within this
range, it is apparent that for higher frequencies, lower gain
values are observed (starting at 5 rad/s). This implies that
for any rapid changes in force input, the resulting output
will be reduced. In addition, the phase margin is 70◦ and
the gain margin is infinite, as the system does not reach a
phase angle of -180◦ within this frequency range.

The results of the bode diagram thus further verify the
stability of the closed-loop system, and validate the use
of a PID controller to fix steady-state error with minimal
overshooting.

V. DISCUSSION

One major area of improvement for our simulation is
in regard to modelling the robot dynamics. In our block
diagram, such dynamics were modelled as a spring-mass-
damper system. However, not all robotic systems can be
simplified as such. Some of the existing literature that
we researched for this project considered multiple degrees
of freedom, accounting for other factors like Coriolis and
centripetal forces. Additionally, as mentioned prior, we found
no obvious parameters for the constant values needed for the
spring-mass-damper system in the literature. These values
were chosen based on an estimated guess, and thus may not
accurately represent reality.

For the scope of our project, we decided that a system
with the highest accuracy (i.e. lowest steady-state error)
would be ideal. The PID controller was determined to be
the best design for such since it resulted in a substantially
lower steady-state error compared to other controllers that we
tested for, namely P and PI controllers. The PID controller
is also able to reduce these errors without compromising the

settling time and introducing extreme overshoot. However,
the P controller had a significantly lower settling time and
no overshoot compared to both the PI and PID controllers.
In the case where a low settling time free of any overshoot
is desired, the P controller would be more optimal.

A major advantage of using a simulation to model surgical
robotics is that the model can be used to predict and refine
the desired robot parameters before physical implementation.
Additionally, experimental outcomes can be reproduced,
tested, and optimized for each patient with various trials. In
the case where physical testing of the robot on tissue samples
or cadavers is unavailable, a simulation of the robot dynamics
is also useful. In terms of limitations, biological systems are
often nonlinear in nature, and thus difficult to predict solely
based on linear models. Another limitation concerns time
delays, which are not always ideal in robotic systems. Thus,
simulations which make this assumption may be inaccurate.
Finally, simulated and physical surgeries utilize different
aspects of surgical competency. For instance, communication
and fast decision making skills are often vital in physical
surgery, but are factors not present within the simulated
model.

VI. CONCLUSION

In this project, the controller-arm dynamics of a simplified
model of a surgical robot device and the soft tissue it is
meant to operate on were represented as spring-mass-damper
systems. To improve the functionality of the device, both a
position and force feedback mechanism were implemented
into the system. A PID controller was shown to produce the
most desired response in terms of accuracy, as the addition
of such greatly reduced the steady-state error of the system.
Thus, a physical surgical robot may consider the use of a
PID controller to specifically aim for an improved accuracy
response. A direct future step in regards to the simulation of
the model presented in this paper is the addition of a haptic
element in order to provide the surgeon with better tactile
feedback during operation. The integration of an upgraded
impedance control system is also desired to refine the motion
control of the surgical robot. While the assumptions and
models used in this project reflect a simplified robotic
system, the implications of simulating a real surgical robotic
system are evident in the ability to predict and control the
actual behavior of such systems.
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