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Abstract - Epilepsy is a neurological disorder in the central 

nervous system in which irregular brain activity results in the 

onset of unprovoked seizures; this abnormal activity is 

commonly linked to an increase in excitatory activity and a 

decrease in inhibitory activity in the synapses of neuron 

connections [1]. While it is the third most common 

neurological disorder, preceded only by Alzheimer’s disease 

and stroke [2], little is known about its causes and the most 

effective methods of treatment. Due to its dynamical nature at 

the system level, computational models are regularly used to 

study this disorder, as well as many other disorders of the 

nervous system. In particular, Neural Mass Models are often 

used to model the interaction between coupled excitatory and 

inhibitory neurons, particularly to create and analyze 

waveforms similar to an electroencephalogram signal (EEG). 

In this work, the Jensen-Ritt Neural Mass Model (JR-NMM) 

was used to model both typical alpha wave patterns in a 

healthy patient along with epileptic behavior. Through 

creating block diagrams in Simulink, finding the transfer 

function for the linearized system and performing a sensitivity 

analysis to identify specific control parameters, it was possible 

to analyze how different combinations of proportional, 

integral, and derivative control parameters can affect the 

pathophysiological system response and have a positive 

clinical impact.  

 

I. INTRODUCTION 

Epilepsy is an alarmingly common neurological disorder, 

affecting around 50 million people worldwide [2]. Patients with 

epilepsy are victim to recurring seizures and other fluctuations in 

global brain activity, which can have adverse, and sometimes 

deadly outcomes. The onset of epileptic seizures is attributed to 

abnormalities in neuronal interactions and properties [3]; these 

abnormalities are often linked to hyperexcitability and hyper 

synchronization of neurons. Hyper-excitability occurs when there 

is an increased likelihood of neural networks being activated, and 

hyper synchronization can be thought of as high magnitude 

neuronal oscillations. An EEG of a patient before and after the 

onset of a seizure can be found in Appendix A. Figure 1; from this 

figure, it is shown that there are higher magnitude and higher 

frequency oscillations during a seizure than there are before, as 

measured in patients with epilepsy. This is consistent with the 

expected behavior under the conditions of hyperexcitability and 

hyper synchronization of neural networks; these conditions can 

result in various motor, sensory, cognitive, or behavioral 

symptoms [3]. Common treatment for this disorder includes 

antiepileptic medication, which can have strong side effects. An 

alternative solution, which has been gaining popularity, is deep 

brain stimulation (DBS) involving closed-loop control using PID-

type controllers [1].  

 

The Jensin-Ritt Neural Mass Model (JR-NMM) can be 

used to model epilepsy as an imbalance between excitatory and 

inhibitory neuron activity. A simple depiction of the neural mass 

model of a cortical unit can be found in Appendix A. Figure 2.   

The interactions between a main population of pyramidal 

neurons and inhibitory and excitatory interneurons are depicted in 

Appendix A. Figure 2. These interactions between populations of 

neurons result in alpha waves, which can be measured via an EEG 

to show brain activity. When excitation is stronger than inhibition, 

this leads to instability which can manifest itself as epileptic 

seizures in a patient. Sigmoid functions can be used in the model 

to ensure that the output must be smaller than the sigmoid 

saturation value. Since excitation is faster than inhibition, 

excitation first reaches saturation, and then the inhibitory behavior 

takes over. This cycle repeats in a periodic manner which results 

in an output of epileptic spikes.  

 

II. DESIGN 

A. Assumptions 

In order to simplify the JR-NNM and to allow us to 

recreate the model in Simulink, several assumptions were 

made. For the closed loop model, it was assumed that there is 

no measurement error for the local field potential of the neural 

mass, 𝑦(𝑡), such that we can use: 

𝑒(𝑡) = 𝑦(𝑡)𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑦(𝑡)                           (1) 

Additionally, it was assumed that the excitatory 

input, 𝑝(𝑡), can be modeled with the band-limited white noise 

block provided in Simulink, which can accurately replicate 

the Gaussian white noise used in literature. Finally, it was also 

assumed that the transformation of the average potential of 

the population to the average rate of action potential fired by 

neurons is instantaneous and can be described by the sigmoid 

function. 

 

B. Jensin-Ritt Neural Mass Model 

As mentioned previously, the Jensin-Ritt Neural 

Mass Model was used to model neuronal activity; it can be 

mathematically written as the following six-dimensional first 

order ODE system [4]: 

𝑥̇0(𝑡) = 𝑥3(𝑡)                                         (2)                                                  
𝑥̇1(𝑡) = 𝑥4(𝑡)                                         (3)                                                   

𝑥̇2(𝑡) = 𝑥5(𝑡)                                         (4) 

𝑥̇3(𝑡) = 𝐴𝑎𝑆𝑖𝑔𝑚(𝑥1(𝑡) − 𝑥2(𝑡)) − 2𝑎𝑥3(𝑡) − 𝑎2𝑥0(𝑡)   (5) 

𝑥̇4(𝑡) = 𝐴𝑎[𝑝(𝑡) + 𝐶2𝑆𝑖𝑔𝑚(𝐶1𝑥0(𝑡))] − 2𝑎𝑥4(𝑡) − 𝑎2𝑥1(𝑡)   (6) 

𝑥̇5(𝑡) = 𝐵𝑏𝐶4𝑆𝑖𝑔𝑚(𝐶3𝑥0(𝑡)) − 2𝑏𝑥5(𝑡) − 𝑏2𝑥2(𝑡)        (7) 

The main neural population consists of three 

subpopulations: the main subpopulation, the excitatory 

feedback subpopulation, and the inhibitory feedback 

population. The main subpopulation can be described with a 

nonlinear static function: 

𝑆(𝑣)  =  2𝑒0/[1 + 𝑒𝑟(𝑣0−𝑣)]                      (8) 

, where 2e0 is the maximum firing rate, v0 is the post-synaptic 

potential corresponding to a firing rate of e0, r is the steepness 

of the sigmoid function, and v is the average presynaptic 

membrane potential. The excitatory and the inhibitory 

feedback subpopulation can be described by linear dynamic 

functions, ℎ𝑒(𝑡) and ℎ𝑖(𝑡), respectively:  



 

 

ℎ𝑒(𝑡) =
𝐻𝑒

𝜏𝑒
𝑡𝑒

−
𝑡

𝜏𝑒                                  (9) 

ℎ𝑖(𝑡) =
𝐻𝑖

𝜏𝑖
𝑡𝑒

−𝑡

𝜏𝑖                                (10) 

, where 𝐻𝑒  and 𝐻𝑖  are the excitatory and inhibitory average 

synaptic gain, respectively, and 𝜏𝑒and 𝜏𝑖are lumped 

representations of the membrane time constants.  

Additionally, in order to take advantage of the linear 

system theory, a linear approximation of the neural population 

model was derived around its equilibrium point; therefore, the 

nonlinear sigmoid function was linearized around the 

equilibrium point 𝑣 = 𝑣0: 

𝐾𝑠 =  𝑆′(𝑣)|𝑣 =𝑣0  =
2𝑒0𝑟𝑒𝑟(𝑣0−𝑣)

[1+𝑒𝑟(𝑣0−𝑣)]2 |𝑣=𝑣0
=

𝑒0𝑟

2
           (11) 

, where Ks is the slope of 𝑆(𝑣𝑜) at the equilibrium point and 

referred to as the sigmoid gain. The linear approximation of 

the neural population model, 𝐺𝑁𝑃𝑀, can be described with the 

following transfer function: 

𝐺𝑁𝑃𝑀  =  
𝑌(𝑠)

𝑃(𝑠)
=

𝐺𝑒(𝑠)

1+𝐾𝑠
2𝐺𝑒(𝑠)[𝐶3𝐶4𝐺𝑖(𝑠)−𝐶1𝐶2𝐺𝑒(𝑠)]

            (12) 

𝐺𝑒(𝑠) =
𝐻𝑒𝜏𝑒

(𝜏𝑒𝑠+1)2                                  (13) 

𝐺𝑖(𝑠) =
𝐻𝑖𝜏𝑖

(𝜏𝑖𝑠+1)2                                   (14) 

, where 𝐺𝑒(𝑠)and 𝐺𝑖(𝑠)are the laplace transform function of 

ℎ𝑒(𝑡) and ℎ𝑖(𝑡), respectively.  

                                                       

C. Baseline Jensen-Ritt Neural Mass Model 

In the healthy, baseline JR-NMM, its simulated 

model appears as a normal EEG reading. The value of each of 

the contents can be found in Appendix A. Table 1., where 𝐻𝑒  

and 𝐻𝑖  were used in the baseline mode [4].   

Based on these values, the block diagram of the system 

was recreated and shown in Figure 1.  

 
Figure 1. Simulink block diagram of baseline JR-NMM. 

 

The simulated output of this block diagram is shown in 

Figure 2 and appears to resemble that of an EEG. 

 

 
Figure 2. Simulated output of the baseline JR-NMM. 

 

D. Modified Epileptic Parameters 

The JR-NMM can be modified to produce 

waveforms similar to those of an EEG recording during an 

epileptic seizure. This is done by changing parameters from 

the baseline model to represent the activity of excitatory and 

inhibitory neurons. In this, we first consider the case of 

hyper-excitatory. The synaptic gain from excitatory neurons, 

𝐻𝑒 , is increased to simulate increased excitatory activity; for 

this, the value of 𝐻𝑒  is increased to 𝐻𝑒𝑑
= 7 mV. However, 

all other parameters, including the time constant of the 

excitatory postsynaptic potential (EPSP) 𝑇𝑒, are unchanged. 

It is thought that the increased synaptic gain is most likely 

due to an increase in extracellular concentration of the 

neurotransmitter glutamate in the brain. 

Furthermore, we consider the second case of low 

inhibition; for this, the synaptic gain from the inhibitory 

neurons, 𝐻𝑖 , is decreased to simulate decreased inhibitory 

activity. In this case, the value of 𝐻𝑖  was decreased to 𝐻𝑖𝑑
=

17 mV; similar to the hyper-excitatory model, the remaining 

parameters remained unchanged. Additionally, the 

decreased inhibitory gain is believed to be due to a decrease 

in concentration of γ-aminobutyric acid (GABA), an 

inhibitory neurotransmitter. 

 

III. ANALYSIS 

A. Baseline Jensen-Ritt Neural Mass Model 

From the transfer function of the baseline JR-NNM, 

Equation 12, its poles and zeros can give information about 

the stability of the system. By setting the numerator to zero, 

its zeros were found to be 𝑍1 = −92.59, 𝑍2 = −92.59, 𝑍3 =
−50, and 𝑍4 = −50. Additionally, by setting the 

denominator to zero, its poles were found to be 𝑃1 = −244.6, 

𝑃2 = −99 + 150𝑖, 𝑃3 = −99 − 150𝑖, 𝑃4 = −64.83, 𝑃5 =
25.7, and 𝑃6 = 11.39. Due to the presence of the two 

positive, real poles, the baseline JR NNM was found to be 

unstable. Furthermore, from the transfer function, the bode 

plot was able to be constructed, shown in Figure 3.  



 

 

 
Figure 3. Bode Diagram of the baseline JR-NMM.  

 

B. Diseased Jensen-Ritt Neural Mass Model 

In order to understand the system response of the 

diseased state of the JR-NMM, the transfer function of each 

case was found and analyzed. 

In the case of hyper-excitation, the transfer function 

of the system was found to be: 

𝐻(𝑠) =                                                                              (15) 
(3.53×10−9)𝑠4+(1.006×10−6)𝑠3+0.000104𝑠2+0.004657𝑠+0.0756

(5.44×10−5)𝑠6+(2.56×10−9)𝑠5+(4.95×10−7)𝑠4+(5.03×10−5)𝑠3−0.0113𝑠2−1.149𝑠−21.27
  

 

Based on this transfer function, the bode diagram 

was plotted in Figure 4.  

 
Figure 4. Bode Diagram of the hyper excited JR-NMM.  

 

Additionally, the zeros of Equation 15 were found to 

be 𝑍1 = −92.59, 𝑍2 = −92.59, 𝑍3 = −50, and 𝑍4 = −50. 

Additionally, the poles of this system were found to be 𝑃1 =
− 320.9, 𝑃2 = −95.6 + 226.8𝑖, 𝑃3 = −95.6 − 226.8𝑖, 𝑃4 =
128.5, 𝑃5 = −61.4, and 𝑃6 = −25.5; due to the presence of 

positive, real pole 𝑃4, the case of hyper excitation is unstable.  

This system was also simulated in Simulink; its 

simulation is shown in Figure 5.  

 
Figure 5. Simulated output of the hyper excited JR-NMM.  

 

Based on this result, the simulated output has a 

higher amplitude and oscillation frequency, as is expected 

from an epileptic EEG wave. 

In the case of low inhibition, the transfer function 

of the system was found to be: 

𝐻(𝑠) =                                                                              (16) 
(1.64×10−9)𝑠4+(4.67×10−7)𝑠3+(4.85×10−5)𝑠2+0.002162𝑠+0.0351

(5.44×10−12)𝑠6+(2.56×10−9)𝑠5+(4.95×10−7)𝑠4+(5.03×10−5)𝑠3+(8.41×10−5)𝑠2−0.125𝑠−1.141
   

Based on this transfer function, the bode diagram 

was plotted in Figure 6.  

 
Figure 6. Bode Diagram of the low inhibition JR-NMM.  

 

Furthermore, the zeros of Equation 16 matched those 

of Equation 15. The poles of this system were found to be 

𝑃1 = − 246.4, 𝑃2 = −97.34 + 152𝑖, 𝑃3 = −97.34 − 152𝑖, 
𝑃4 = −63.62, 𝑃5 = 43.68, and 𝑃6 = −9.37; again, due to the 

presence of positive, real pole 𝑃5, the case of low inhibition is 

also unstable. This system was also simulated in Simulink; its 

simulation is shown in Figure 7.  

 
Figure 7. Simulated output of the low inhibition JR-NMM.  

 

 This simulation has results similar to that hyper-

excitation state of the JR NMM such that it is higher in 

amplitude and oscillation frequency than that of the baseline 

model. 



 

 

C. Adding PI Control  

In order to help stabilize the JR-NNM, a proportional 

integral (PI) controller was added to the NNM in the hyper-

excitation and low-inhibition state. In the first case of hyper-

excitation, a proportional controller value of 310 and an 

integral controller of 2 was added based on literature [1]; the 

controller transfer function is given by: 

𝐹(𝑠) = 310𝑠 + 2                      (17) 

Therefore, from the NMM and controller transfer 

functions, the open loop transfer function is the product of the 

two; the open loop transfer function for case 1 is given by: 

𝑂𝐿(𝑠) =                                                                            (18) 
(1.09×10−6)𝑠5+0.000312𝑠4+0.0324𝑠3+1.44𝑠2+23.45𝑠+0.151

(5.44×10−12)𝑠7+(2.56×10−9)𝑠6+(4.95×10−7)𝑠5+(5.03×10−5)𝑠4+0.0113𝑠3−1.15𝑠2−21.27𝑠
  

From this, the bode diagram was plotted as shown in 

Figure 8.  

 
Figure 8. Open loop bode diagram of the hyper-excitation 

state of the JR-NNM with PI control. 

 

Based on the bode diagram of the open loop 

response, it will give information about the closed loop 

response, such as its stability. From Figure 8, the phase 

margins were determined to be 12.2 degree, 57.9 degrees, and 

26 degrees; therefore, as none of the phase margins are 0, the 

closed loop system response will be stable. In order to confirm 

the closed loop system response, the closed loop transfer 

function and bode diagram were also found. The closed loop 

function can be found by:  

𝐶𝐿(𝑠) = 𝑂𝐿(𝑠)/(1 + 𝑂𝐿(𝑠))                 (19) 

From the closed loop transfer function of this 

system, the bode diagram of the closed loop system was found 

and shown in Appendix B. Figure 3.  

From the transfer function, the poles of this system 

were found to be 𝑃1 = −92.94 − 461.72𝑖, 𝑃2 = −92.94 +
461.72𝑖, 𝑃3 = −206.79, 𝑃4 = −61.65, 𝑃5 = 7.995 + 8.7𝑖, 
𝑃6 = 7.995 − 8.7𝑖, and 𝑃7 = −0.07; therefore, the closed 

loop system response is stable as all the poles are negative, 

just as the open loop system predicted.  

For case 2, a proportional controller of 90 and an 

integral control of 2 was used; the controller transfer function 

is given by: 

𝐹(𝑠) = 90𝑠 + 2                                     (20) 

Therefore, the open loop transfer function for case 

2 was found to be: 

𝑂𝐿(𝑠) =                                                                              (21) 
(1.474×10−7)𝑠5+(4.204×10−5)𝑠4+0.004362𝑠3+0.1947𝑠2+3.163𝑠+0.0702

(5.44×10−12)𝑠7+(2.56×10−9)𝑠6+(4.95×10−7)𝑠5+(5.03×10−5)𝑠4+(8.41×10−5)𝑠3−0.125𝑠2−1.14𝑠
  

From this, the bode diagram was plotted as shown 

in Figure 9. 

 
Figure 9. Open loop bode diagram of the low-inhibition 

state of the JR-NNM with PI control. 

 

From Figure 9, the phase margin was determined to 

be 11.4 degrees; therefore, since the phase margin is not 0, the 

closed loop system response will be stable. In order to confirm 

the closed loop system response, the closed loop transfer 

function and bode diagram were also found. From the closed 

loop transfer function, the bode diagram of the system was 

found and is shown in Appendix B. Figure 4. 

Furthermore, from the transfer function, the poles of 

this system were found to be 𝑃1 = −95.17 − 200𝑖, 𝑃2 =
−95.17 + 200𝑖, 𝑃3 = −210.51, 𝑃4 = −63.78, 𝑃5 =
−2.85 +  23.53𝑖, 𝑃6 = −2.85 − 23.53𝑖, and 𝑃7 = −0.035; 

as all the poles of this system are negative, the closed loop 

system loop is stable.  

 

D. Adding PID Control 

To further help stabilize the system, a PID controller 

was used. In both cases of hyper-excitation and low 

inhibition, the same PI controls from the above section and a 

derivative controller of 50 was used; the transfer function of 

the PID controllers are:  

𝐹(𝑠) = 50𝑠2 + 310𝑠 + 2                               (22) 

𝐹(𝑠) = 50𝑠2 + 90𝑠 + 2                                (23) 

for the hyper-excitation and low-inhibition state, 

respectively. For the first case of hyper-excitation, the open 

loop transfer function becomes: 

𝑂𝐿(𝑠) =                                                                            (24) 
(1.76×10−6)𝑠5+(5.14×10−5)𝑠4+0.2652𝑠3+5.224𝑠2+23.45𝑠+0.151

(5.44×10−12)𝑠7+(2.56×10−9)𝑠6+(4.95×10−7)𝑠5+(5.03×10−5)𝑠4+0.0113𝑠3−1.15𝑠2−21.27𝑠
  

 

; the resulting bode diagram is shown in Figure 10. 



 

 

 
Figure 10. Open loop bode diagram of the hyper-excitation 

state of the JR-NNM with PID control. 

 

From Figure 10, the phase margin was determined to 

be 90.3 degrees; therefore, the closed loop system response 

will be stable. In order to confirm the closed loop system 

response, the closed loop transfer function and bode diagram 

were also found; the bode diagram of the closed loop system 

was found and is shown in Appendix C. Figure 5. 

Furthermore, from the transfer function, the poles of 

this system were found to be 𝑃1 = −32586.2, 𝑃2 =
−98.12 + 30.5𝑖, 𝑃3 = −98.12 − 30.5𝑖, 𝑃4 = −59.45,
𝑃5 = −35.37, 𝑃6 = −0.47, and 𝑃7 = −0.08; therefore, as all 

the poles are negative, the closed loop system response is 

stable. For the second case of low inhibition, the open loop 

transfer function can be written as follows: 

𝑂𝐿(𝑠) =                                                                               (25) 
(8.19 × 10−8)𝑠6 + (2.35 × 10−5)𝑠5 + 0.00247𝑠4 + 0.1125𝑠3 + 1.95𝑠2 + 3.163𝑠 + 0.0702

(5.44 × 10−12)𝑠7 + (2.56 × 10−9)𝑠6 + (4.95 × 10−7)𝑠5 + (5.03 × 10−5)𝑠4 + (8.41 × 10−5)𝑠3 − 0.125𝑠2 − 1.14𝑠
 

; its resulting bode diagram is depicted in Figure 11.  

 
Figure 11. Open loop bode diagram of the low-inhibition 

state of the JR-NNM with PID control. 

 

From Figure 11, the phase margin was determined to 

be 90.7 degrees; therefore, the closed loop system response 

will be stable. In order to confirm the closed loop system 

response, the closed loop transfer function and bode diagram 

were also found; the bode diagram for this system is also 

shown in Appendix C. Figure 6.  

Furthermore, from the transfer function, the poles of 

this system were found to be 𝑃1 = −15229.1, 𝑃2 =
−95.34 −  21.18𝑖, 𝑃3 = −95.34 + 21.18𝑖, 𝑃4 =
−59.84, 𝑃5 = −35.81, 𝑃6 = −1.12, and 𝑃7 = −0.04; 

therefore, as all the poles are negative, the closed loop system 

response is stable.  

 

IV. DISCUSSION 

Simulating alpha wave behavior using the JR-NMM 

results in simulations that resemble those shown on the EEG of a 

healthy, resting patient; however, these results do not exactly 

match those shown in literature [5]. This is likely due to the fact 

that these works omitted the exact noise block pulse width and 

amplitude parameters utilized in their respective simulations. 

When modifying the parameters by increasing excitatory synaptic 

gain and decreasing inhibitory synaptic gain, the peaks had higher 

amplitudes and frequency which is equivalent to recorded seizures 

on an EEG. Similar results can be generated by modifying the time 

constant values utilized in the model. For example, increasing the 

value of the average time constant of the inhibitory postsynaptic 

potential is another method for modelling decreased inhibitory 

behavior. 

While the JR- NMM itself and its baseline constants are 

highly accepted and referenced in the fields of neuroscience and 

neuroengineering, the specific modified inhibitory and excitatory 

gain values chosen to simulate epilepsy are only found in two 

pieces of literature [5]; therefore, it is unclear how much thorough 

testing has been completed to validate the accuracy of these 

particular constant values. Despite the inherent estimations and 

limitations of mathematical models, they can be advantageous as 

alternatives to physiologic experimentation. In the case of 

epilepsy, it would be highly unethical to repeatedly trigger or 

induce seizures in patients to test the efficacy of different control 

parameters. 

 For future directions, it could be advantageous to test the 

proportional, derivative, and integral control schemes defined on 

this work on other neural mass models which simulate the 

frequency rhythms of alpha waves. An example of one such model 

is the Wendling Model, which builds off the JR- NMM by adding 

an additional inhibitory loop and corresponding constants [6]. 

Another further direction includes testing the developed control 

scheme on a pathophysiological model with slightly different 

altered inhibitory and excitatory gain or time constants. All in all, 

a control system approach to regulating symptoms of epilepsy 

through neural mass models has been demonstrated to be 

beneficial over the conventional pathophysiological approach; 

however, since little information is available, there is much work 

left to be done. Future research should focus on the refinement of 

this model.  

 

ACKNOWLEDGEMENTS 

The authors would like to thank the instructional assignments for 

the Biosystem and Controls course, BENG 122a, that helped us 

throughout the quarter as well as Professor Gert Cauwenberghs for 

his invaluable guidance throughout the fall quarter. 

 

  



 

 

V. APPENDIX 

A. Neural Mass Model 

 
Figure 2. EEG before (top graph) and after (bottom 

graph) the onset of a seizure [3] 

 

 
Figure 2. Neural Mass Model of a Cortical Unit [1] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Constant Description Value 

He  Average excitatory synaptic gain 3.25 mV 

Hed Increased excitatory synaptic gain in 

diseased state 

7 mV 

Hi Average inhibitory synaptic gain 22 mV 

Hid Decreased inhibitory synaptic gain in 

diseased state 

17 mV 

Te Average time constant of excitatory 

postsynaptic potential  

0.0108 s 

Ti Average time constant of inhibitory 

postsynaptic potential 

0.02 s 

C Average number of synapses between 

excitatory and inhibitory populations  

135 

C1 Average number of synapses 

established by principal neurons on 

excitatory neurons 

C = 135 

C2 Average number of synapses 

established by excitatory interneurons 

on principle neurons  

0.8C = 108 

C3 Average number of synapses 

established by principal neurons on 

inhibitory neurons 

0.25C = 33.75 

C4 Average number of synapses 

established by inhibitory interneurons 

on principle neurons  

0.25C = 33.75 

vmax Maximum neuron firing rate 

(maximum of sigmoid function)  

5 s-1 

v0 Value at which 50% of the maximum 

neuron firing rate is attained  

6 mV 

r Slope of sigmoid function at v0 0.56 mV-1 

 

Table 1. Physiological interpretation and standard values of the 

parameters in the JR-NMM [4] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

B. Closed Loop Bode Diagrams for PI Control 

 
Figure 3. Closed loop bode diagram of the hyper-excitation 

state of the JR-NNM with PI control. 

 

 
Figure 4. Closed loop bode diagram of the low-inhibition 

state of the JR-NNM with PI control. 

 

C. Closed Loop Bode Diagrams for PID Control 

 
Figure 5. Closed loop bode diagram of the hyper excitation 

state of the JR-NNM with PID control. 

 
Figure 6. Closed loop bode diagram of the low-inhibition 

state of the JR-NNM with PID control. 
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