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Abstract - Epilepsy is a neurological disorder in the central
nervous system in which irregular brain activity results in the
onset of unprovoked seizures; this abnormal activity is
commonly linked to an increase in excitatory activity and a
decrease in inhibitory activity in the synapses of neuron
connections [1]. While it is the third most common
neurological disorder, preceded only by Alzheimer’s disease
and stroke [2], little is known about its causes and the most
effective methods of treatment. Due to its dynamical nature at
the system level, computational models are regularly used to
study this disorder, as well as many other disorders of the
nervous system. In particular, Neural Mass Models are often
used to model the interaction between coupled excitatory and
inhibitory neurons, particularly to create and analyze
waveforms similar to an electroencephalogram signal (EEG).
In this work, the Jensen-Ritt Neural Mass Model (JR-NMM)
was used to model both typical alpha wave patterns in a
healthy patient along with epileptic behavior. Through
creating block diagrams in Simulink, finding the transfer
function for the linearized system and performing a sensitivity
analysis to identify specific control parameters, it was possible
to analyze how different combinations of proportional,
integral, and derivative control parameters can affect the
pathophysiological system response and have a positive
clinical impact.

l. INTRODUCTION

Epilepsy is an alarmingly common neurological disorder,
affecting around 50 million people worldwide [2]. Patients with
epilepsy are victim to recurring seizures and other fluctuations in
global brain activity, which can have adverse, and sometimes
deadly outcomes. The onset of epileptic seizures is attributed to
abnormalities in neuronal interactions and properties [3]; these
abnormalities are often linked to hyperexcitability and hyper
synchronization of neurons. Hyper-excitability occurs when there
is an increased likelihood of neural networks being activated, and
hyper synchronization can be thought of as high magnitude
neuronal oscillations. An EEG of a patient before and after the
onset of a seizure can be found in Appendix A. Figure 1; from this
figure, it is shown that there are higher magnitude and higher
frequency oscillations during a seizure than there are before, as
measured in patients with epilepsy. This is consistent with the
expected behavior under the conditions of hyperexcitability and
hyper synchronization of neural networks; these conditions can
result in various motor, sensory, cognitive, or behavioral
symptoms [3]. Common treatment for this disorder includes
antiepileptic medication, which can have strong side effects. An
alternative solution, which has been gaining popularity, is deep
brain stimulation (DBS) involving closed-loop control using PID-
type controllers [1].

The Jensin-Ritt Neural Mass Model (JR-NMM) can be
used to model epilepsy as an imbalance between excitatory and
inhibitory neuron activity. A simple depiction of the neural mass
model of a cortical unit can be found in Appendix A. Figure 2.

The interactions between a main population of pyramidal
neurons and inhibitory and excitatory interneurons are depicted in
Appendix A. Figure 2. These interactions between populations of
neurons result in alpha waves, which can be measured via an EEG
to show brain activity. When excitation is stronger than inhibition,
this leads to instability which can manifest itself as epileptic
seizures in a patient. Sigmoid functions can be used in the model
to ensure that the output must be smaller than the sigmoid
saturation value. Since excitation is faster than inhibition,
excitation first reaches saturation, and then the inhibitory behavior
takes over. This cycle repeats in a periodic manner which results
in an output of epileptic spikes.

1. DESIGN
A.  Assumptions
In order to simplify the JR-NNM and to allow us to
recreate the model in Simulink, several assumptions were
made. For the closed loop model, it was assumed that there is
no measurement error for the local field potential of the neural
mass, y(t), such that we can use:
e(t) = y(t)target - J’(t) (1)
Additionally, it was assumed that the excitatory
input, p(t), can be modeled with the band-limited white noise
block provided in Simulink, which can accurately replicate
the Gaussian white noise used in literature. Finally, it was also
assumed that the transformation of the average potential of
the population to the average rate of action potential fired by
neurons is instantaneous and can be described by the sigmoid
function.

B. Jensin-Ritt Neural Mass Model
As mentioned previously, the Jensin-Ritt Neural
Mass Model was used to model neuronal activity; it can be
mathematically written as the following six-dimensional first
order ODE system [4]:
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%3(t) = AaSigm(x,(t) — x,(t)) — 2ax;(t) — a’x,(t) (5)
%4() = Aa[p(t) + C,Sigm(Cyxo(8))] — 2ax,(t) — a?x,(t) (6)
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The main neural population consists of three
subpopulations: the main subpopulation, the excitatory
feedback subpopulation, and the inhibitory feedback
population. The main subpopulation can be described with a
nonlinear static function:
S(v) = 2ey/[1 + e" 0] (8)
, Where 2gq is the maximum firing rate, vo is the post-synaptic
potential corresponding to a firing rate of eg, r is the steepness
of the sigmoid function, and v is the average presynaptic
membrane potential. The excitatory and the inhibitory
feedback subpopulation can be described by linear dynamic
functions, h,(t) and h;(t), respectively:
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, Where H, and H; are the excitatory and inhibitory average
synaptic gain, respectively, and t.and t;are lumped
representations of the membrane time constants.
Additionally, in order to take advantage of the linear
system theory, a linear approximation of the neural population
model was derived around its equilibrium point; therefore, the
nonlinear sigmoid function was linearized around the
equilibrium point v = vy:
T(vo-v)
Ks = SOy, = fommoop v =2 (1)
, Where Ks is the slope of S(v,) at the equilibrium point and
referred to as the sigmoid gain. The linear approximation of
the neural population model, Gy py,, can be described with the
following transfer function:
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, Where G, (s)and G;(s)are the laplace transform function of
he(t) and h;(t), respectively.

C. Baseline Jensen-Ritt Neural Mass Model
In the healthy, baseline JR-NMM, its simulated
model appears as a normal EEG reading. The value of each of
the contents can be found in Appendix A. Table 1., where H,
and H; were used in the baseline mode [4].
Based on these values, the block diagram of the system
was recreated and shown in Figure 1.
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Figure 1. Simulink block diagram of baseline JR-NMM.

The simulated output of this block diagram is shown in
Figure 2 and appears to resemble that of an EEG.
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Figure 2. Simulated output of the baseline JR-NMM.

D. Modified Epileptic Parameters

The JR-NMM can be modified to produce
waveforms similar to those of an EEG recording during an
epileptic seizure. This is done by changing parameters from
the baseline model to represent the activity of excitatory and
inhibitory neurons. In this, we first consider the case of
hyper-excitatory. The synaptic gain from excitatory neurons,
H,, isincreased to simulate increased excitatory activity; for
this, the value of H, is increased to H, , = 7 mV. However,
all other parameters, including the time constant of the
excitatory postsynaptic potential (EPSP) T,, are unchanged.
It is thought that the increased synaptic gain is most likely
due to an increase in extracellular concentration of the
neurotransmitter glutamate in the brain.

Furthermore, we consider the second case of low
inhibition; for this, the synaptic gain from the inhibitory
neurons, H;, is decreased to simulate decreased inhibitory
activity. In this case, the value of H; was decreased to H; , =
17 mV; similar to the hyper-excitatory model, the remaining
parameters remained unchanged. Additionally, the
decreased inhibitory gain is believed to be due to a decrease
in concentration of y-aminobutyric acid (GABA), an
inhibitory neurotransmitter.

I ANALYSIS

A. Baseline Jensen-Ritt Neural Mass Model

From the transfer function of the baseline JR-NNM,
Equation 12, its poles and zeros can give information about
the stability of the system. By setting the numerator to zero,
its zeros were found to be Z; = —92.59, Z, = —92.59, Z; =
—-50, and Z, =-50. Additionally, by setting the
denominator to zero, its poles were found to be P, = —244.6,
P, = -99 4+ 150i, P; = —99 — 150i, P, = —64.83, P; =
25.7, and P; = 11.39. Due to the presence of the two
positive, real poles, the baseline JR NNM was found to be
unstable. Furthermore, from the transfer function, the bode
plot was able to be constructed, shown in Figure 3.
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Figure 4. Bode Diagram of the hyper excited JR-NMM.

Additionally, the zeros of Equation 15 were found to
be Z, = —92.59, Z, = —92.59, Z; = —50, and Z, = —50.
Additionally, the poles of this system were found to be P, =
— 3209, P, = —95.6 + 226.8i, P; = —95.6 — 226.8i, P, =
128.5, P; = —61.4, and P, = —25.5; due to the presence of
positive, real pole P,, the case of hyper excitation is unstable.

. _ This system was also simulated in Simulink; its Figure 7. Simulated output of the low inhibition JR-NMM.
simulation is shown in Figure 5.

This simulation has results similar to that hyper-
excitation state of the JR NMM such that it is higher in
amplitude and oscillation frequency than that of the baseline
model.
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From this, the bode diagram was plotted as shown

C. Adding PI Control
In order to help stabilize the JR-NNM, a proportional
integral (PI) controller was added to the NNM in the hyper-
excitation and low-inhibition state. In the first case of hyper-

excitation, a proportional controller value of 310 and an in Figure 9. .
integral controller of 2 was added based on literature [1]; the - i s
controller transfer function is given by: "
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Therefore, from the NMM and controller transfer g °
functions, the open loop transfer function is the product of the g
two; the open loop transfer function for case 1 is given by: § 40
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From this, the bode diagram was plotted as shown in 5135
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loop transfer function, the bode diagram of the system was
found and is shown in Appendix B. Figure 4.
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—95.17 + 200i, P; =-210.51, P, =—-63.78, P;=
—2.85 + 23.53i, P, = —2.85 — 23.53i, and P, = —0.035;
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Figure 8. Open loop bode diagram of the hyper-excitation
state of the JR-NNM with PI control.

Based on the bode diagram of the open loop
response, it will give information about the closed loop
response, such as its stability. From Figure 8, the phase
margins were determined to be 12.2 degree, 57.9 degrees, and
26 degrees; therefore, as none of the phase margins are 0, the
closed loop system response will be stable. In order to confirm
the closed loop system response, the closed loop transfer
function and bode diagram were also found. The closed loop
function can be found by:

CL(s) = OL(s)/(1 + OL(s)) (129)

From the closed loop transfer function of this
system, the bode diagram of the closed loop system was found
and shown in Appendix B. Figure 3.

From the transfer function, the poles of this system
were found to be P, = —92.94 — 461.72i, P, = —92.94 +
461.72i, P; = —206.79, P, = —61.65, P; = 7.995 + 8.7i,
P, = 7.995 —8.7i, and P, = —0.07; therefore, the closed
loop system response is stable as all the poles are negative,
just as the open loop system predicted.

For case 2, a proportional controller of 90 and an
integral control of 2 was used; the controller transfer function
is given by:

F(s) =90s +2 (20)

Therefore, the open loop transfer function for case
2 was found to be:

as all the poles of this system are negative, the closed loop
system loop is stable.

Adding PID Control
To further help stabilize the system, a PID controller
was used. In both cases of hyper-excitation and low
inhibition, the same PI controls from the above section and a
derivative controller of 50 was used; the transfer function of
the PID controllers are:
F(s) =50s%+310s + 2 (22)
F(s) = 5052+ 90s + 2 (23)
for the hyper-excitation and low-inhibition state,
respectively. For the first case of hyper-excitation, the open
loop transfer function becomes:
OL(s) = (24)

(1.76x107%)s54(5.14%1075)s%4+0.265253+5.224524+23.455+0.151

(5.44x10712)s7 +(2.56X10~2)56+(4.95x10~7)s5+(5.03X10~5)s4+0.011353-1.1552—21.275

; the resulting bode diagram is shown in Figure 10.
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Figure 10. Open loop bode diagram of the hyper-excitation
state of the JR-NNM with PID control.

From Figure 10, the phase margin was determined to
be 90.3 degrees; therefore, the closed loop system response
will be stable. In order to confirm the closed loop system
response, the closed loop transfer function and bode diagram
were also found; the bode diagram of the closed loop system
was found and is shown in Appendix C. Figure 5.

Furthermore, from the transfer function, the poles of

this system were found to be P, =-—-32586.2, P, =
—98.12 + 30.5i, P; = —98.12 — 30.5{, P, = —59.45,
P, = —35.37, P, = —0.47,and P, = —0.08; therefore, as all
the poles are negative, the closed loop system response is
stable. For the second case of low inhibition, the open loop
transfer function can be written as follows:
OL(s) =

(8.19 x 1078)s°® + (2.35 x 107°)s® + 0.00247s* + 0.1125s° + 1.95s% + 3.163s + 0.0702

(5.44 x 10712)s7 + (2.56 X 1072)s6 + (4.95 x 10-7)s5 + (5.03 X 10~%)s* + (8.41 X 10~%)s3 — 0.12552 — 1.14s
; its resulting bode diagram is depicted in Figure 11.
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Figure 11. Open loop bode diagram of the low-inhibition
state of the JR-NNM with PID control.

From Figure 11, the phase margin was determined to
be 90.7 degrees; therefore, the closed loop system response
will be stable. In order to confirm the closed loop system
response, the closed loop transfer function and bode diagram
were also found; the bode diagram for this system is also
shown in Appendix C. Figure 6.

Furthermore, from the transfer function, the poles of
this system were found to be P, =—-15229.1,P, =
—95.34 — 21.18i,P; = —95.34 4+ 21.18i,P, =
—59.84,P; = —35.81,P, = —1.12, and P, = —0.04;
therefore, as all the poles are negative, the closed loop system
response is stable.

\VA DISCUSSION

Simulating alpha wave behavior using the JR-NMM
results in simulations that resemble those shown on the EEG of a
healthy, resting patient; however, these results do not exactly
match those shown in literature [5]. This is likely due to the fact
that these works omitted the exact noise block pulse width and
amplitude parameters utilized in their respective simulations.
When modifying the parameters by increasing excitatory synaptic
gain and decreasing inhibitory synaptic gain, the peaks had higher
amplitudes and frequency which is equivalent to recorded seizures
on an EEG. Similar results can be generated by modifying the time
constant values utilized in the model. For example, increasing the
value of the average time constant of the inhibitory postsynaptic
potential is another method for modelling decreased inhibitory
behavior.

While the JR- NMM itself and its baseline constants are
highly accepted and referenced in the fields of neuroscience and
neuroengineering, the specific modified inhibitory and excitatory
gain values chosen to simulate epilepsy are only found in two
pieces of literature [5]; therefore, it is unclear how much thorough
testing has been completed to validate the accuracy of these
particular constant values. Despite the inherent estimations and
limitations of mathematical models, they can be advantageous as
alternatives to physiologic experimentation. In the case of
epilepsy, it would be highly unethical to repeatedly trigger or
induce seizures in patients to test the efficacy of different control
parameters.

For future directions, it could be advantageous to test the
proportional, derivative, and integral control schemes defined on
this work on other neural mass models which simulate the
frequency rhythms of alpha waves. An example of one such model
is the Wendling Model, which builds off the JR- NMM by adding
an additional inhibitory loop and corresponding constants [6].
Another further direction includes testing the developed control
scheme on a pathophysiological model with slightly different
altered inhibitory and excitatory gain or time constants. All in all,
a control system approach to regulating symptoms of epilepsy
through neural mass models has been demonstrated to be
beneficial over the conventional pathophysiological approach;
however, since little information is available, there is much work
left to be done. Future research should focus on the refinement of
this model.
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V. APPENDIX

A. Neural Mass Model
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graph) the onset of a seizure [3]
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Figure 2. Neural Mass Model of a Cortical Unit [1]

Constant Description Value

He Average excitatory synaptic gain 3.25mV

Heg Increased excitatory synaptic gain in 7mV
diseased state

Hi Average inhibitory synaptic gain 22 mV

Hig Decreased inhibitory synaptic gainin | 17 mV
diseased state

Te Average time constant of excitatory 0.0108 s
postsynaptic potential

Ti Average time constant of inhibitory 0.02s
postsynaptic potential

C Average number of synapses between | 135
excitatory and inhibitory populations

C1 Average number of synapses C=135
established by principal neurons on
excitatory neurons

Cz Average number of synapses 0.8C =108
established by excitatory interneurons
on principle neurons

Cs Average number of synapses 0.25C =33.75
established by principal neurons on
inhibitory neurons

Cs Average number of synapses 0.25C =33.75
established by inhibitory interneurons
on principle neurons

Vimax Maximum neuron firing rate 5s1
(maximum of sigmoid function)

Vo Value at which 50% of the maximum | 6 mV
neuron firing rate is attained

r Slope of sigmoid function at vo 0.56 mv1

Table 1. Physiological interpretation and standard values of the

parameters in the JR-NMM [4]
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Figure 3. Closed loop bode diagram of the hyper-excitation
state of the JR-NNM with PI control.
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Figure 4. Closed loop bode diagram of the low-inhibition
state of the JR-NNM with PI control.

C. Closed Loop Bode Diagrams for PID Control
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Figure 5. Closed loop bode diagram of the hyper excitation
state of the JR-NNM with PID control.
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