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Abstract - Blood coagulation can be regulated by
intravenously administered anticoagulants such as heparin.
A simplified model of the coagulation cascade biosystem is
used to allow for correlations to be made such as changes in
prothrombin and thrombin concentrations with respect to
time and the rate of thrombin production to the rate of
prothrombin consumption. These correlations are then used
to solve and describe other relevant relationships between
anticoagulants heparin and antithrombin. The equations are
then used to model the dynamics of thrombin concentration
under steady state doses of an anticoagulant such as heparin.
The Laplace transform of these equations are used to form a
transfer function that allows for the identification of values
for a proportional-derivative (PD) controller that serves to
relay the appropriate heparin dosage, keeping the system
stable. A measurement delay is accounted for between the
input, the blood sample, and the output, thrombin
concentration.
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I. INTRODUCTION

An important property of blood is its ability to
coagulate in response to inflammatory stimuli. While this is a
vital function in the case of wounding or soft tissue injuries, it is
a response that must be dampened when undergoing invasive
procedures such as heart bypass surgery, cardiac catheterization,
or kidney dialysis.1,2 To prevent fatal blood clotting for such
procedures, anticoagulant drugs such as heparin are
administered intravenously. However, heparin dosage must be
tightly controlled, as high concentrations of the drug can lead to
excessive and fatal bleeding.1 Thus, it is critical to develop a
model of blood coagulation control that can be used alongside

point-of-care (POC) coagulation measurement devices to guide
clinicians in administering proper doses of heparin. Our
approach in this project is to formulate a transfer function
describing ordinary blood coagulation in the human body. With
this, we will be able to map out a control diagram of this system
and define a controller that can keep blood coagulation at a
desired level.

II. BACKGROUND

Although the blood coagulation cascade involves over
76 factors, it can be simplified into two pathways: the intrinsic
and extrinsic pathways, which both work to activate the clotting
factor Xa.1 Essentially, Factor Xa aids in the conversion of
prothrombin into thrombin which in-turn allows fibrinogen to be
turned into fibrin, formalizing a clot. Unfractionated heparin, or
heparin in its natural form, is an anticoagulant which already
exists in our bodies but can also be injected intravenously.
Unfractionated heparin advances antithrombin’s effect on
various clotting factors specifically factor Xa and prothrombin,
inhibiting them from activating and therefore halting the
cascade.1

III. SPECIFIC AIMS

One of the aims of this study is to create a simplified
model of the coagulation cascade biosystem by relying on
assumptions made in other literature and within this paper. In
doing so the dynamics of thrombin concentration can be
observed under steady state doses of the anticoagulant heparin.
When heparin is administered it is crucial to ensure proper
dosage is given to the patient so the dosage will be regulated
with the use of a PID controller. Using the transfer function
derived from the simplified model we aim to find the values of
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the PID controller that keeps the system stable when
administering heparin to the blood. The last aim is to account for
the measurement delay between the input and output of the
system. In this model the input is the blood sample from the
patient that is inserted into the device and the output is the
thrombin concentration. The device used to analyze the blood
takes time and cannot be assumed to be an instantaneous
measurement so a time delay must be accounted for.

IV. ASSUMPTIONS & LIMITATIONS

The cascade being analyzed, while it can be simplified
into two main pathways as seen in Figure 1, involves a larger
network of pathways and to model it entirely will require the use
of higher order systems. While it may be possible to model the
entire system, there are simplifications that can be made based
on some assumptions made from relevant literature in order to
make this project possible given the amount of time allocated to
it.

To take on this task, the first step was to choose a
segment of this biosystem to focus on, and in this case it is
limited to the actions of heparin and antithrombin on thrombin.
Making this our focus assumes that the blood coagulation
factors upstream of thrombin do not have a significant effect on
thrombin concentration. We also assume when heparin is
administered into the bloodstream the concentrations of heparin
are much smaller than the concentrations of antithrombin and
thrombin. Next, the dosing of heparin is done so at a steady rate
after time equals zero. In clinical practice this steady rate dosage
is important as the drug concentrations will consistently stay
within the therapeutic limits for long periods of time
determining the way the body absorbs, distributes, metabolises
and eliminates the substance.3 The next three assumptions are
made within this paper to further simplify the blood coagulation
model. One assumption is that the conversion of prothrombin to
thrombin is negligible to focus on the effects of just
antithrombin and thrombin from heparin. The other assumption
is the initial concentrations of prothrombin and thrombin are the
same to establish a first order system. Lastly, we assume there is
a 5 minute time delay in the measurement system from the time
the system receives the blood sample to when it outputs the
thrombin concentration.

V. METHODS & EQUATIONS

In order to mathematically describe our simplified
model, we start with the equations describing the change in
prothrombin concentration with time, and the change in
thrombin concentration with time, which correspond to
equations (1) and (2), respectively:
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The right-hand side of (1) describes the consumption of
prothrombin as it is converted to thrombin, which is why the
entire equation tends to a negative value. Each individual term in
(1) accounts for the activation of prothrombin by blood factors
in the initiation and propagation phases of coagulation, namely
factors FXa, FV, FVIII, and FXI. These factors are activated by
thrombin [II]. Thus, their concentration values are mediated by
thrombin concentration. Equation (2) consists of two terms on
the right-hand side, the first describing the production of
prothrombin as thrombin is consumed, and the other the direct
downregulation of thrombin by antithrombin.4 Because the first
term in (1) is equal to the rate of prothrombin consumption, we
can substitute (1) into (2) to yield (3):
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Next, we can describe the concentration of the endogenous
anticoagulant antithrombin as time varies with (4). The equation
was empirically derived by observing the reaction kinetics of the
heparin-enhanced inhibitory action of antithrombin on
thrombin.5 Thus, (4) yields a relationship between the
anticoagulants heparin and antithrombin, meaning we can
substitute (4) into the last term of (3). Finally, using the
assumption that the conversion of prothrombin to thrombin is
negligible, we can simply substitute the change in prothrombin
term in (3) for thrombin concentration over time. These
assumptions and substitutions allow us to come to (5), which
describes all interactions of the biosystem within the scope of
this project.
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With the self-contained equation for our biosystem, we can then
take its Laplace transform to yield:

s⋅IIa(s) + IIa(0) = IIa(s) H(s) (6)𝑘
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From (6), we can reorder the terms to find the transfer function
of our biosystem, as described in (7) with the Laplace transform
of the output thrombin over the input heparin. Finally, we can
use the biosystem transfer function to formulate the closed-loop
transfer function of our system in (8). All the simulation
variables involved in the aforementioned equations are listed in
Table 1.
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A block model was then generated using Simulink,
shown in Figure 2. A steady dose of heparin is injected into the
system, which then gets the concentration of heparin multiplied
by constants v, k, and b2 (Found in Table 1). To get the
concentration of thrombin, an integral block is added. Based off
equation (5) the amount of heparin down regulates the
generation of thrombin. The concentration of thrombin then has
a positive feedback loop on itself when it is multiplied by a
constant k3 (Found in Table 1). At the bottom of the simulink
model there is a measurement system that measures the
concentration of thrombin. This is meant to simulate the amount
of time it takes to draw blood from a patient, place into a
machine, and the time it takes the blood to coagulate. The
estimated time delay was 5 minutes. The measured
concentration then is compared to the target concentration of 1
nM, which is fed into the PD controller. Constants kp and kd are
determined from equation (8) and are imputed into the simulink
model (kp and kd can be found in Table 1). Finally, the PD
controller inputs the necessary heparin dosage to reach the
desired concentration, which closes the loop.

Lastly, our open-loop system can be described by
(9)-(11) in order to generate an open-loop bode diagram.
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(11)𝑂𝐿(𝑠) =  39,837.07 + 18,731.83
813𝑠 − 0.0122

3



VI. RESULTS

To study the stability of the system a bode plot was
generated from (11), which used the same kp and kd constants
derived for the PD controller. Looking at Figure 3 there are two
plots generated: Magnitude Vs. Frequency and Phase Vs.
Frequency.

A block diagram was created in simulink without a PD
controller and measurement delay to represent the natural
response of the system. A graph of the Concentration of
thrombin Vs. Time was plotted using that model and is
shown in Figure 4. Using the block diagram from Figure 2
another graph was generated of the Concentration of
thrombin Vs. Time, shown in Figure 5.

VII. INTERPRETATIONS & CONCLUSIONS
Studying how the open loop system will respond gives

insight into how the closed loop will behave. So a bode plot was
created in Figure 3. A phase margin and gain margin can not be
determined, because the phase never reaches -180 or 180 and
the gain never reaches 0dB. Though phase margin and gain
margin can not be determined, it still says a lot about the system.
Systems go unstable when both values approach 0, the larger the
margins the more room for error there is. In the case in Figure
3, the system will be stable no matter what, because neither gain
goes to zero and the phase to -180. Looking at the magnitude
plot it can be seen at low frequencies the magnitude goes to
infinity, resulting in a DC error of 0.

From the graphs in Figure 4 and Figure 5, we can see
how the PD controller stabilizes our system’s response. Figure 4
illustrates how thrombin concentration varies throughout time
without any modifications to our system (no PD control and no
measurement delay). Because thrombin concentration continues
to increase throughout the observation period, it does not reach a
steady state value and thus, the system can be classified as
unstable. In Figure 5, we can see the effect that a PD controller
and 5 second measurement delay have on the system’s stability.
In the presence of PD control and a measurement delay,
thrombin concentration reaches a steady state value of
approximately 1 nM. Since thrombin concentration reaches a
steady state value, the system can be classified as stable.

One complication of this system is that the
concentration of thrombin with PD control moves far further
past the set point of 10uM than desired. In other words, our PD
controller was not able to minimize the overshoot of the system.
This is an understandable outcome, as our system did not
include an integral controller. Generally speaking, when the
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measured value of the target variable in a system is approaching
the set point as described in a feedback loop, proportional and
integral controllers work in opposition to force the measured
value to reach the set point quickly without extreme
overshooting. As the measured value approaches the set point,
the actions of the integral controller decreases, which allows the
measured value to smoothly settle to the set point.6 Thus, it is
expected that we have such a large overshoot directly after t=0.
Nonetheless, it should be noted that this is not a physiologically
accurate representation of the magnitude of thrombin overshoot
possible in a human body. The production of thrombin would be
mediated by the consumption of prothrombin, which we were
unable to represent due to the complexity of the system, and the
lack of literature prescribing mathematical models and values
for the coagulation cascade. Thus, the initial overshoot of
thrombin is likely not to be a substantial issue in clinical
practice, although it does point out a substantial limitation of
this project, given its scope and the amount of time given to
create it.

VIII. CLINICAL APPLICATIONS

Our model for blood coagulation regulation has wide
clinical applications. For example, clinicians can use our model
to diagnose patients with clotting disorders. Since the output of
our model is thrombin concentration, we can use this to find
thrombin time, which is a measure of how long it takes for a
blood clot to form in the presence of excess thrombin. A
standard thrombin time will be between 15-19 seconds, and if
one’s thrombin time falls outside this range, it is often indicative
of a clotting disorder.1,2 In addition to aiding in diagnostic
processes, our model can also be used during surgery. This is
because when patients are under operation, they are at risk of
excess bleeding from low thrombin concentration. Thus, our
system can be integrated into a device to be used during surgery
to determine when thrombin concentration is too low, and
remedy this by intravenously injecting more thrombin or
lowering hepain dosages. In a similar vein, our system can be
used for preventative care when a patient’s thrombin
concentration is too high. When there is too much thrombin in
the body, a patient is at risk of excess clotting which can result

in venous or arterial thrombosis. Therefore, our system will be
able to sense when a patient’s thrombin concentration is
abnormally high and correct this through the intravenous
injection of an anticoagulant, such as heparin. Lastly, our blood
coagulation regulation system can be used as a point of care
device for patients with bleeding disorders. For example,
patients with hemophilia are often at risk of excess bleeding
from nose bleeds and minor injuries. Therefore, it is important
that these patients can obtain medical assistance outside of the
clinic when non-predictable instances of severe bleeding occur.
Our blood coagulation regulation system will be able to sense
when hemophilia patients are experiencing heavy bleeding and
provide clinical care through the intravenous injection of a
coagulant, such as thrombin.
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APPENDIX

TABLE 1: Simulation Variables and Values

Simulation
Variable

Value Unit Description

k3 1.5×10−5 1/nM⋅s Rate of prothrombin production by thrombin consumption

b2 10.05 1/nM⋅s Rate of thrombin inactivation by antithrombin

k 7.2 M/min Rate of antithrombin activation by heparin

v 813 1/min Reaction velocity constant of heparin-enhanced antithrombin

kp −258.87​ n/a Proportional control value

kd −550.54​ n/a Derivative control value
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