
Modeling Biosystem Controls of Hypoglycemia

Abstract— Effective blood sugar level management is crucial
for individuals, as an impaired glucose-glucagon system can
possess serious health risks such as diabetes. Diabetes affects
around 23.6 million Americans and without proper treatment,
diabetes can lead to more severe health conditions. This paper
proposes a simplified blood glucose-glucagon model for people
experiencing hypoglycemia. This model uses a series of ordinary
differential equations to represent the relationship between
glucose and glucagon. As glucose levels drop in the bloodstream,
the pancreas releases glucagon to increase glucose levels. A
control system using PID control was used to stabilize the model
and reduce error. The system was modeled using Simulink to
verify the feasibility and to achieve the goal of representing
physiological changes in the bloodstream. The model is simple in
order to gain a better understanding of the complex interactions
between glucose and glucagon and how to apply them to people
with diabetes, experiencing a hypoglycemic episode.
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I. INTRODUCTION
Blood sugar management is a relatively effortless task for
anyone with a fully functioning glucose control system in their
body, however people with diabetes have an insufficient
glucose-insulin regulatory system. Around 23.6 million
Americans (7.8% of the population in the United States) have
diabetes. If one cannot manage their diabetes, then they are at
risk of various health conditions including blindness, heart
disease, kidney failure, stroke, and brain death if the condition
is not treated [1]. Therefore it is important to design a valid
control system that can regulate one’s blood glucose levels.

Before designing such a control system, we must determine
the scope of the issue. There are two types of diabetes: type 1
and type 2. In a healthy person, beta cells in the pancreas
release insulin into the bloodstream when glucose levels
increase. The excess glucose is then stored in the liver as
glycogen. However, in a diabetic person with type 1 diabetes,
their body’s immune system destroys the beta cells, preventing
them from producing insulin. In a diabetic person with type 2
diabetes, their body develops an insulin resistance [2].
According to the World Health Organization, a normal blood
glucose level ranges between 70 mg/dL and 100 mg/dL [3].

Hypoglycemia occurs when the glucose levels in the blood
drop below 70 mg/dL while hyperglycemia occurs when the
glucose level is higher than 125 mg/dL. In the case of
hypoglycemia, the pancreas alpha cells release glucagon

which triggers glycogenolysis. In glycogenolysis, glucose is
generated from non-carbohydrate sources such as protein and
lipids stored as glycogen, and is then released into the
bloodstream [4]. We decided to focus on the interactions
between glucagon and glucose in hypoglycemia in order to
learn how glucagon affects the body and its role in diabetes.

II. METHODS

A. Equations and Parameters

To model blood glucose regulation during hypoglycemia, we
used differential equations to describe the fluctuations in
glucagon and glucose. The mathematical equations to model
the dynamics of glucose and glucagon are:

(1)𝑑𝐶
𝑑𝑡 = α𝑂(𝑡) − 1

τ 𝐶(𝑡)

(2)𝑑𝐺
𝑑𝑡 = 𝑘𝐶(𝑡)𝐺(𝑡) 

Glucagon is produced when the blood glucose level is
decreased. is the input or impulse for the production of𝑂(𝑡)
glucagon. The equation for the glucagon concentration is
given by . In equation (1), the glucagon concentration is𝐶(𝑡)
produced at a rate that depends upon the impulse while it is
removed from the system as a constant multiple times the
concentration of glucagon itself. The 𝛂 term from equation
(1) is based on the average total blood volume in the human
body [5]. The average person has five liters of blood in their
system, so alpha is set to .The production of1
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glucose is given in equation (2), where the production is
dependent upon the concentration of glucagon, the is the rate𝑘
at which glucagon stimulates glucose production. the value for
is set to be 0.005 [7]. The is the time constant, representing𝑘 τ

the time it takes for glucagon to settle in the bloodstream after
it spikes. In the average human body, it takes anywhere from
180 to 200 minutes for glucagon to settle down, so was set toτ
be [7].1
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The glucagon production term, O(t), acts as PID feedback
control for the glucagon concentration as shown below where

represents the proportional control, represents the𝐾
𝑝

𝐾
𝑖

integral control, and represents the derivative control.𝐾
𝑑

𝑂(𝑡) = 𝐾
𝑝
𝑒(𝑡) + 𝐾

𝑖
−𝑖𝑛𝑓

𝑡

∫ 𝑒(𝑡)𝑑𝑡 + 𝐾
𝑑

𝑑
𝑑𝑡 𝑒(𝑡)        (3)
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Using a PID controller is important to maintaining
homeostasis in people with type 1 diabetes. The proportional
integral derivative controller is used to regulate the glucagon
infusion rate when the blood glucose levels fall below the
threshold of 70 mg/dL. The controller is also used to
successfully maintain the blood glucose and plasma glucagon
concentration within a healthy range [4].

Finally, the error term, e(t), is determined as the difference
between the target glucose concentration and the measured
glucose levels as shown below. The target glucose
concentration is based on healthy glucose concentration in the
bloodstream for a healthy adult which is above 70 mg/dL [2].
Using a simple conversion, the target was calculated to be
equal to 0.388 mmol/L to be consistent with the units.

 𝑒(𝑡) = 𝑇 − 𝐺
𝑚𝑒𝑎𝑠

(𝑡)             (4)
System dynamics is modeled for equations 1, 2 and 4. Below
is the table summarizing the values we used for our
simulations.

Table 1: Coefficient values used in the equations.

α =  0. 2 [ 1
𝐿 ] The average total blood

volume is 5 liters.

𝛕 =  1
200  [ 1

𝑚𝑖𝑛 ] Glucagon takes 180-200
min to settle after it spikes
in the bloodstream.

T =  0. 388[ 𝑚𝑚𝑜𝑙
𝐿 ] Healthy glucose level in the

bloodstream for a healthy
adult.

𝐾𝑝 =  0. 006
[L/min*mmol]

[L/min*mmol]𝐾𝑖 = 0 
[L/min*mmol]𝐾𝑑 =  1

Control parameters for the
glucose homeostasis model.
Values are found after
analyzing the transfer
function and Bode Plot.

𝑘 =  0. 005 𝐿
𝑡 𝑚𝑚𝑜𝑙

Rate constant for glucose
production

G  =  0. 1 [ 𝑚𝑚𝑜𝑙
𝐿 ] Initial concentration for

glucose

C  =  0. 7[ 𝑚𝑚𝑜𝑙
𝐿 ] Initial concentration for

glucagon

B. Assumptions
In modeling blood glucose management during hypoglycemia,
several simplifying assumptions can be made. Factors such as
the presence of insulin in the bloodstream, and outside
physiological factors such as exercise and metabolic rates
were not included. While it is possible to consider all of these
factors in our mathematical model, we primarily focused on
glucagon feedback for the sake of feasibility, given the amount

of time given to work on the model. This way, the model can
be modeled using a linear, first-order system of ordinary
differential equations. In the model, we used initial
concentrations of for glucose and ] for  0. 1 [ 𝑚𝑚𝑜𝑙

𝐿 ] 0. 7[ 𝑚𝑚𝑜𝑙
𝐿

glucagon. This was done to match hypoglycemic conditions in
the bloodstream.

C. Simulink

Figure 1: Block diagram for glucose and glucagon dynamics
without PID control

The block diagram shows the model for glucose and glucagon
dynamics. Each block corresponds to each term in the system.
From Figure 1, the deduction for equations (1), (2) and (4) are
simple. The system response is saved in the scope that can be
used to visualize the simulation. The simulation ran for T =
5000 minutes.

Figure 2: Block diagram for glucose and glycogen dynamics
with PID control

The block diagram is the same exact model as Figure 1,
however the PID control is added.

D. PID Controller
A PID controller helps stabilize the system for correcting
errors. By adjusting the Kp, we can determine how to correct
the system by using the last immediate error. The Kp
multiplies the error by its own account and corrects the error
according to its magnitude. Kp when correctly applied
enhances the way the system responds to changes from the
target. By adjusting the Ki, we can correct the system
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according to the accumulation of error terms in the past.
Lastly, for Kd, the PID controller looks at current trends in the
error and tries to predict future errors. By adjusting the Kd, we
adjust for this future error [8].

The following values were chosen for the PID controller: Kp =
0.006 [L/min*mmol], Ki = 0 [L/min*mmol], and Kd = 1
[L/min*mmol]. Since Ki is equal to 0 [L/min*mmol], the
system does not keep track of previous errors. This means that
the system is dependent on current conditions. We designed
the system in a way that mimics the state of the pancreas. In a
biological setting, we are assuming that the beta cells in the
pancreas do not depend on previous conditions to work; for
example, if the pancreas had previously encountered
fluctuations in blood glucose concentrations, our PID
controller assumes that the response of the alpha cells in the
pancreas produces glucagon on present conditions and not
previous ones.

To get a Kp of 0.006 [L/min*mmol], we increased the gain of
Kp until Kp started oscillating. If we made Kp too high, then
the system would become unstable [8]. Since Ki is 0
[L/min*mmol], we adjusted Kd to 1 [L/min*mmol] to stop the
oscillations. These values are found from the transfer function
equation (5) and from analyzing the Bode plot, Figure 5. In
hypoglycemic system a faster response is crucial, so adding a

control can lead to overshooting. The primary concern for𝐾𝑖 
the system was to correct for the disturbance, and a PD control
is sufficient for it. By doing so, we obtained a steady state
error and the rate of change for glucagon and glucose settled at
their set point. Adjusting values for controller parameters also
show stability at the values that was found from the transfer
function.

III. RESULTS

A. Simulink

Figure 3: System response for glucose (blue) and glucagon
(yellow) without PID control

From Figure 3 the system response of glucose (blue) and
glucagon (yellow) is shown . While the response is stable we
see oscillations in the response. In a biosystem the
concentrations cannot be negative and given enough time the
concentrations will set at a steady state. In hypoglycemia the
low concentration of glucose will trigger the response of
glucagon to increase the concentration of glucose. From the
Bode diagram, we can tune the controller to get a better phase

margin and signal amplification by adding the Kp and Kd. The
result for the system response is given below.

Figure 4: System response for glucose (blue) and glucagon
(yellow) with PID control

The proportional control added a gain in the system and the
derivative control gave a better damping and removed the
initial rise of the response. There are no more oscillations in
the system because of this controller. The system stabilizes at
the steady state more rapidly as needed in the hypoglycemic
system. There is a rise in the glucose concentration as the
system starts at a hypoglycemic initial condition. The increase
in glucose concentration is in response to the decrease in
glucagon concentration that exponentially decreases to the
steady state.

B. Transfer Functions

𝐻(𝑠)  =  𝐺(𝑠)
𝑂(𝑠)  =  𝑘 α

𝑠 +  1
τ   +  𝑘 α

            (5)

Equation 5 represents the closed loop transfer function. The
overall function gives no zeros and a pole at

. The pole is negative so the system is𝑝
1
 =  − ( 1

τ +  𝑘α)
stable. There is damping and the system will settle in its
equilibrium state in response to time, which is confirmed from
the system response.

Figure 5: Closed loop simplest block diagram

This block diagram is a version for our simulink model
reduced to a closed loop feedback system. Closed loops
transfer function is given by:

(6)𝐶𝐿(𝑠) =  𝐹(𝑠)𝐻(𝑠)
1 + 𝐹(𝑠)𝐺(𝑠)𝐻(𝑠)  = (𝐾𝑝 + 𝐾𝑑 𝑠)𝑘 α

𝑠 +  1
τ   +  𝑘 α

 

; ; (7)𝐹(𝑠) =  𝐾𝑝 +  𝐾𝑑𝑠 𝐾𝑝 =  0. 006 𝐾𝑑 =  1
;𝐻(𝑠) = 𝑘 α

𝑠 + 1
τ   + 𝑘 α

 𝐺(𝑠) =  1
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C. Bode Plots

Figure 6: Open loop transfer function Bode plot without PID
control

The negative dB values at lower frequencies implies that the
corresponding components of the signal at those frequencies
are reduced. This reduction could be due to factors like
damping, filtering, or regulatory mechanisms in the
physiological system. Also since the dB values are negative,
this implies that the system is stable. The PID control helped
to stabilize the system and reduce oscillations.

IV. CONCLUSION

A. Discussion

Figure 7: Glucose and Glucagon dynamics in diabetes [9]

Assessing the graphical depictions of our glucose and
glucagon concentrations over time, we can immediately see
the inverse relationship between glucose and glucagon
concentration. This response is in correlation with biology
seen in Figure 7, because glucose concentration increases as a
result of an increase in glucagon concentration. Once the
glucose is nearly done increasing, glucagon has already begun
to decrease. Then glucose and glucagon experience a leveling
concentration, with glucose having increased and glucagon
having decreased. If glucose dips passed the 70 mg/dl
threshold, the concentration of glucagon gradually increases to
raise glucose concentration accordingly. Figure 3 representing
a run without the PID controller shows that glucose and
glucagon concentrations are varied at high frequencies. There
is also a glucose concentration error with the system we built,

which also causes some glucagon concentration errors. The
PID controller tames these oscillations and changes due to
error.

B. Future Improvements
Something we would improve on for future models would be
to add a differential equation that further describes the
relationship between glucagon and glucagon. While obtaining
our results it became evident that our observed discrepancies
were due to the oversight of this relationship. While glucose
downregulation is driven by a direct interaction between
insulin and glucose, glucose upregulation is a direct
interaction between glucagon and glucagon, and not glucagon
and glucose as we initially modeled. This realization suggests
that the discrepancy observed in our data can be attributed to
the absence of this omitted relationship between glucagon and
glucagon. We expected that our data will show that glucose
rises and settles into the target, from a blood sugar deficit in
the blood instead of dropping down to the target we chose.

The dynamics of glucose and glucagon are not only dependent
upon each other but are highly complex and depend on various
other factors such as insulin, hormones, food intake, etc. The
model in this paper talks about constants that do not change
over time. But in reality, the constants can vary depending on
the environment. The analysis of glucose and glucagon
dynamics can be studied further by sliding the constants to see
the change in system behavior. This bifurcation analysis can
tell us about the environmental conditions where the
concentrations behave differently.

C. Advantages and Disadvantages
One advantage of our simulation to an actual physiological
experiment is the fact that our simulation obtains results much
faster. Instead of having to run an experiment that measures
the responses of glucagon production in a patient and their
glucose concentration, we can observe glucagon’s response to
glucose concentration with our own set of parameters in a
hypoglycemic environment. We can see the changes in
concentrations of glucose and glucagon from when glucose is
below its threshold to when it goes back up above it. A
disadvantage of our simulation to a physiological experiment
is that our simulation includes glucose concentration error and,
as a result, glucagon concentration error. Also the simulation
does not contain possible factors such as food intake which
produces a simplified model. The simulation uses the same
parameters, however each person has their own different
parameters. For example, the liters of blood in one’s body
varies between each person which will affect the glucagon
response rate.

D. Conclusion
In conclusion, while the identification of our missing equation
highlighted the need for ongoing refinement, our research
yielded valuable insights into the intricacies of the blood
glucose control system that operates inside the human body.
The late discovery emphasized that any simplification of a
model should ensure that all relevant equations and variables
are included. Moving forward a thorough pathophysiological
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analysis which includes obtaining a larger amount of
relationships and variables than are needed for a simplified
model be considered so that our simplified model can be
validated.
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