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Abstract — The ears, integral organs in the human
body, play vital roles in hearing and balance. The inner
parts of the ears, particularly the semicircular canals
(labyrinth) and vestibular system are essential for
maintaining body balance. These structures, filled with
fluid and lined with hair cells, respond to head
movements by shifting the fluid, allowing the brain to
sense these movements and control the body to stay
balanced. Disturbances or abnormalities in the
vestibular system can lead to challenges in maintaining
balance, and correct eye position, and may result in
vertigo. Understanding the pathology and symptoms
associated with inner ear issues provides valuable
insights for developing future treatments and care
strategies. In this paper, we attempt to model the
dynamics of hair cells during head movement. Its
mathematical equations were utilized to build a Simulink
model, whose output was analyzed.
Keywords — Cochlear hair cells, Stereocilia,

Labyrinth, Vestibular System, Simulink

I. INTRODUCTION

Every human has a basic need for physical activity
to thrive physically and mentally in their life[1]. A crucial
part of physical activity is balance. The balance enables us
to control and to have the right coordination over our body.
We can’t stand straight or feel stable when we lose a sense of
balance. Our central nervous system (CNS) and sensory
systems work together to have a proper sense of balance in
our body[2]. Sensory systems such as our inner ear, vision,
and muscles send a flow of information to our CNS where
integration of information happens to control our body, and
CNS can control our body based on the information from
our sensory system. An issue within one of the sensory
systems or CNS still can lead to balance problems.

The auditory and equilibrium functions of our organs,
particularly the ears, play integral roles in maintaining vital
bodily functions. The inner ear has the cochlea responsible
for hearing, while the semicircular canals (labyrinth) and the
vestibule, are responsible for the inner ear's role in
maintaining balance [3]. There are three different
semicircular canals: anterior, lateral, and posterior. The
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vestibule consists of utricle and saccule. Both structures are
filled with fluid and lined with specialized hair cells, called
Stereocilia, the labyrinth and vestibule dynamically respond
to movement[4]. The labyrinth is responsible for rotary
motion, or motion not in straight motion, and the vestibule is
responsible for forward/backward and up/down motion. As
the body, particularly the head, moves, the fluid within these
structures shifts, subsequently affecting the orientation of the
hair cells. This interaction enables our brain to perceive
movement accurately and exert control over the body to
ensure the balance is maintained.

Issues with inner ear conditions lead to the development
of multiple diseases such as labyrinthitis and vertigo. Both
diseases have symptoms of dizziness and a feeling of
off-balance. In England and Wales, the total number of
hospital admissions related to the inner-ear issue has
increased by 234.8% from 1999 to 2020[5].

In this paper, we aimed to model and simulate the
dynamics of the inner ear’s hair cell during head movement
balance based on relevant physiological details and
resources. We designed a closed-loop feedback control
system with assumptions and linear time-invariant
mathematical equations. SIMULINK is mainly used to
simulate a normal model and a disease(vertigo) model of the
inner ear hair cell. Their contrasting results from the two
models are discussed as well

II. METHOD

A. Key Assumptions

To streamline the modeling and simulation process
for the dynamics of hair cells during head movement,
several key assumptions have been implemented. The
approach embraces a lumped model for hair cells, presuming
uniform movement across the cells on each ear side, and
attributes structural rigidity to these cells, negating any
bending effects. Once the head movement ends, the lumped
model of hair cells stays at their final position. In addition,
vision is excluded from this simulation of balance, including
no light and closed eyes during the simulation. An error in
the system comes from signal production within the hair
cells, which occurs around 10 microseconds after the signal.
Furthermore, the alignment of the head axis is assumed to be



parallel to the lumped hair cell model, offering a simplified
spatial orientation.

These assumptions collectively create a more efficient
simulation process, though it is important to acknowledge
that certain parts of our assumptions are deliberately omitted
for an isolated look into hair cells and balance.

B. Mathematical Equations/Models
The equation below states that the rate of change of

the angle θ over time t (angular velocity) is equal to ω(t). In
the context of hair cells, θ could represent the displacement
of the hair cell, and ω(t) would be its angular velocity.

𝑑θ
𝑑𝑡 = ω(𝑡)

This is the rotational form of Newton's second law,
where I is the moment of inertia of the hair cell, dω/dt is the
angular acceleration, θ(t) is a restoring torque that is
proportional to the displacement (potentially due to elastic
properties of the hair cell), bω(t) is a damping torque
(resistance), and τ(t) is the external torque applied on the
hair cell, perhaps due to the movement of fluid in the inner
ear or other forces.

𝐼 𝑑ω
𝑑𝑡 =− 𝑎θ(𝑡) − 𝑏ω(𝑡) + τ(𝑡)

This represents the rate of change of the measured
angle θmeas. It's a form of a high-pass filter that would be
used to differentiate the actual position from the measured
position, factoring in a time constant, tmeas. This could be part
of a mechanism that senses the position of the hair cell over
time.

𝑑θ
𝑚𝑒𝑎𝑠

𝑑𝑡 = 1
𝑡

𝑚𝑒𝑎𝑠
(θ(𝑡) − θ

𝑚𝑒𝑎𝑠
(𝑡))

The equation for our PID controller includes the
proportional (P) and derivative (D) terms and omits the
integral (I) term (hence a PD controller). Here, Kp is the
proportional gain, and Kd is the derivative gain. The PD
controller adjusts the torque τ(t) based on the current error
e(t), and the rate of change of this error. This could be a
model of how the body adjusts the forces on the hair cell in
response to sensed imbalances.

 τ(𝑡) =  𝐾
𝑝
𝑒(𝑡) + 𝐾

𝑑
𝑑
𝑑𝑡 𝑒(𝑡)

The error e(t) is the difference between the target
angle θtarget(t) and the current angle θ(t). This error is what
the body tries to minimize to maintain balance.

𝑒(𝑡) = (θ
𝑡𝑎𝑟𝑔𝑒𝑡

(𝑡) − θ(𝑡))
C. Constants

The moment of inertia, I, quantifies an object's
resistance to changes in its rotational motion. For slender
objects like hair cells, the moment of inertia can be
estimated using the formula m times r squared, where m is
the mass and r is the rotational radius. Based on the provided
information, each hair cell has a mass of kg, with an
approximate rotational radius of meters. Thus, the moment
of inertia for a single hair cell is calculated as:

𝐼
𝑠𝑖𝑛𝑔𝑙𝑒

= 𝑚 × 𝑟2 = 10−15𝑘𝑔 × (10−5𝑚)
2

= 10−25𝑘𝑔 · 𝑚2

When considering all 10,000 hair cells in the inner
ear collectively as a unified mass, the combined moment of

inertia is significantly increased. Each hair cell contributes
to the total moment of inertia, which aggregates to:
𝐼

𝑡𝑜𝑡𝑎𝑙
= 104 × 𝐼

𝑠𝑖𝑛𝑔𝑙𝑒
= 104 × 10−25𝑘𝑔 · 𝑚2 = 10−21𝑘𝑔 · 𝑚2

The constant a is related to the system's restoring
force, which is usually associated with the object's elastic
coefficient or a similar force constant; we cannot calculate a
directly. The constant b pertains to the system's damping,
which is related to the medium's viscosity or internal
resistance. Typically, these are determined through
experimental data or a detailed system model. In this model,
we deduce the possible values of constants a and b based on
simulation results. Furthermore, to facilitate calculations in
Simulink simulations, we have scaled up the value of I. We
believe that scaling all constants of the system
proportionally will not affect the accuracy of the actual
results.

;𝐼 = 1 𝑘𝑔 * 𝑚2

;𝑎 = 1 𝑘𝑔*𝑚

𝑠2

;𝑏 = 3 𝑘𝑔*𝑚
𝑠

;𝑡
𝑚𝑒𝑎𝑠

= 10−5𝑠
D. Transfer Function and Laplacian Form

This represents the transfer function of a
second-order linear system, where θ(s) is the Laplace
transform of the output angle as a function of time, and τ(s)
is the Laplace transform of the input torque. The constants b,
and a represent the moment of inertia, damping coefficient,
and stiffness of the system, respectively. The denominator
polynomial characterizes the dynamic behavior of the
system, with s being the complex frequency variable in the
Laplace domain. The form of this transfer function suggests
a system that could be a model for the rotational dynamics
of an object, such as the movement of hair cells in response
to forces within the inner ear, given their relevance to
balance.

θ(𝑠)
τ(𝑠) = 1

𝐼𝑠2+𝑏𝑠+𝑎
⇒ 1

𝑠2+3𝑠+1
This represents the open-loop transfer function of a

PD controller, where Kp is the proportional gain and Kd is
the derivative gain. The term τmeas represents a time constant
associated with the measurement delay in the system. This
transfer function is designed to modify the behavior of the
system by altering the dynamic response to changes in the
error between a desired position (setpoint) and the actual
position. It is part of a control strategy to achieve desired
performance characteristics such as stability, speed of
response, and accuracy. The PD controller's effect is to
produce an output (torque, in this case) that is fed back to
the system to minimize error and achieve the desired control
objective. The simplification indicates specific values for the
gains and time constant, providing a more direct
representation of how the controller will influence the
system's behavior.

OL(s) =  
𝐾

𝑑
𝑠+𝐾

𝑝

(𝐼𝑠2+𝑏𝑠+𝑎)(1+τ
𝑚𝑒𝑎𝑠

)
⇒ 4𝑠+10

(𝑠2+3𝑠+1)(1+10−5)

E. Implementation of SIMULINK



III. RESULTS

Figure 1: Measured theta in a system with no PD. The target
angle was 15 degrees, however, output theta was not
achieved, reaching about half the target value.

Figure 2: A model with PD in the top left section, hair cell
movement in the bottom left section, and time delay and
feedback on the right side.

Figure 3: Measured theta graph with the PD control
incorporated model; the system reaches the target angle
within 4 seconds.

Figure 4: Diseased model with original PD control.
Oscillations grow over time due to the large time delay,
causing the sensation of vertigo. Attuned model with
updated PD control.

Figure 5: Diseased model with adjusted PD. The PD values
decreased which may indicate that when the brain adapts to
vertigo, it tones down the input of an ear sending extreme
signals.

Figure 6: Measured angle in diseased system with updated
PD control. The system reaches a target angle of 15 degrees
within 25 seconds. This is much longer than the previous
system, however, due to the diseased system, a faster time
was not possible to achieve.



IV. DISCUSSION

The simulated movement of an inner ear hair cell without
a PID controller demonstrated that the current system only
reached half the target angle. This necessitated the need for a
PD controller to represent our system better. The original PD
controller utilized normalized values since most constants
found were very small. This PD system was crafted with a
Kp of 10 and Kd of 4 which stabilized the system with a -90
phase margin.

The change in time delay was increased to demonstrate a
diseased system where the hair cells are damaged causing
either weaker signals or lack of signal production. The
increase from 10 microseconds to 5 seconds was chosen
since it represents a possible median of time delays in signal
production from hair cells in individuals with inner ear
disorders, however, there is no literature on the actual time
delays in signal production for these conditions. As shown
in the previous figures, any notable increase in time delay
would have caused the system to become unstable.

The new PD controller utilized a smaller Kp of 3 and Kd
of 0.3, which could represent the need to quiet faulty data
from a damaged ear. If the brain took the input from a
diseased ear without adjusting, it would be susceptible to
constant vertigo and other balance issues.

V. CONCLUSION

The model with the PD controller successfully simulates
the movement of inner ear hair cells and correlates their
deflection with head position. The conversion of this system
to a diseased model does give a quantitative representation
of vertigo as well. However, the model is limited due to the
many unknown quantities of the subject. Since the hair cells
are very small and their physical properties are not well
studied, it was very difficult to format the equations and find
solid results. This forced the model to be very simple since
adding complex feedback loops could not be supported.
Research into the dynamics of these hair cells could heavily
improve our model. Another area that can be expanded on
would be incorporating two separate systems for the
vestibule and semicircular canals (labyrinth) which sense
forward/backward movement and rotational movement,
respectively. Having two separate systems would allow the
system to track movement in 3D space, giving a more
applicable system that could stimulate hair cell sensation and
where issues like vertigo can crop up. These systems could
also account for movement of fluid in the inner ear, which
would make the system more complex but accurate. Other
inputs that do influence balance like vision and
proprioception would be helpful in regulating the ear
system, however, these inputs are very difficult to implement
due to their abstract units. Our model can serve as a base to
start designing solutions to inner ear issues related to
sensory cells and could be applied to show a mathematical
representation of balance issues related with the inner ears.
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