
  

 

Abstract— Hot isostatic pressing (HIP) is a standard 

additive manufacturing process that is used to reduce the 

porosity of metal castings and ceramics, but in medical 

device manufacturing, is used often on biomedical 

implants. The ability to monitor and regulate 

temperature and pressure during a hot isostatic pressing 

cycle is critical to achieving the desired densification, 

ensuring implant biocompatibility and structural 

integrity. To optimize and automate the regulation of 

temperature and pressure during a HIP cycle, a PID-

controlled system that injects an initial amount of gas, 

regulates the rate of temperature—pressure increase 

through thermal energy, then holds at a specified target 

is proposed. Utilizing the concepts of control theory, this 

work aims to theoretically characterize a HIP cycle as a 

dynamic biosystem by simulating PID control to 

determine if the temperature and pressure requirements 

of a desired HIP cycle are met. The results of our 

simulation suggest that this control system does have the 

potential to successfully monitor and regulate 

temperature and pressure levels during a HIP cycle, but 

it falls short as the system heats too rapidly.  Possible 

future considerations are reducing simplifying 

assumptions and parameter optimization to approach a 

more realistic physical modeling of this system with a 

longer rise time. Regardless, this work still provides the 

theoretical background for modeling the temperature 

and pressure regulation of a HIP through subsequent 

controller design. 
 

Clinical Relevance—Hot Isostatic Pressing is 

imperative to ensure patient mobility, maintain 

biocompatibility, and improve the mechanical properties 

of bioimplants. Thus, it is essential the right pressure and 

temperature is applied to achieve patient needs.  

I. INTRODUCTION 

The hot isostatic pressing (HIP) chamber is utilized for 
bioimplants post processing. The process of hot isostatically 
pressing the implants improves the implant’s material 
microstructure by eliminating porosity. This is achieved by 
sustaining implants at very high pressure and temperature for 
an extended period, known as the soak time [1]. After this is 
achieved, the implant goes from about 99.5% dense from the 
3D printer to around 99.99% dense [2]. The high pressure and 
temperature applied isostatically ensures the micro-air bubbles 
in the implants collapse without destroying or altering the 
original implant structure. Optimal hipping results are 
achieved at 1,172 K and 1,003 atm for 2 hours and 15 minutes 
per cycle [3]. First, the chamber must be fully vacuum sealed 

as atmospheric gases can react at such high temperatures and 
pressures, thereby causing material defects to the implants. To 
prevent surface reactions, argon gas is often used as the gas 
medium for its inert behavior and optimal thermal energy 
transfer. Temperature and pressure gain of the chamber is done 
through the input, thermal energy, which is achieved by 
induction coils to ensure thermal energy gain throughout the 
chamber. As for pressurizing, this is achieved by the argon gas 
once it is released into the chamber [4]. Ensuring uniform 
pressure from all directions is vital for preventing any 
deformation of the implant. The chamber is typically made 
from molybdenum which is strong enough to withstand high 
pressure and temperature. The chamber must gradually reach 
our target pressure and temperature because if this process is 
done too quickly, we will lose the isostatic properties leading 
to deformed implants. Once the cycle has run for its allocated 
time the system is cooled, and the pressure is slowly released. 
Similarly, it is crucial to slowly release the pressure and cool 
the system so as not deform the implant by breaking the 
isostatic properties inside the chamber.      

This portion of the process is not covered in this report as 
the main focus is achieving our target pressure and 
temperature and keeping them steady for the whole cycle. This 
is where a proportional—integral—derivative (PID) controller 
is utilized with a pressure and temperature sensor so our 
system can correct and restabilize if it begins to sway from the 
required target parameters. Control was achieved through 
simplifying assumptions and subsequent ordinary differential 
equation (ODE) derivation for pressure and temperature to 
obtain a transfer function which calculates the PID 
coefficients, allowing for system characterization. The high 
pressure and temperature applied isostatically ensures the 
micro-air bubbles in the implants collapse without destroying 
or altering the original implant structure. In achieving 
predictable control, we ensure the implants are durable, 
resistant to corrosion, and biocompatible which all reduce the 
risk of adverse reactions within the body once implanted [5]. 

II. ODE FORMULATION 

A. Assumptions 

To obtain the ODE for pressure and temperature, we 
simplified the dynamics of the system’s temperature-pressure 
regulation by making the following assumptions: 

• Volume is cylindrical and incompressible. 

• Thermal energy loss of the gas medium within the 
chamber and subsequent loss to the environment 
are considered separately. 

• Thermal energy gain of the system is simplified 
to just the interior gas medium. 
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• Thermal energy loss is kept constant. 

• Thermal energy gain and loss is uniform 
throughout the chamber surface area. 

• Initial system temperature and pressure is based 
off after argon gas addition. 

• External environment is at standard temperature 
and pressure (STP). 

Thus, the control problem can be reduced to 2 processes: 

1. Thermal energy input to increase system 
temperature-pressure until target conditions are met. 

2. Balancing system thermal energy gain with thermal 
energy loss to the environment to sustain hipping at 
target for the soak time.  

B. Pressure ODE Derivation 

As argon gas is inert and exclusively the gas medium 
within the chamber, the ideal gas law (1) was used to model 
the relationship between temperature and pressure. Assuming 
that volume is incompressible: 

𝑃𝑉 = 𝑛𝑅𝑇 → 𝑃 =
𝑛𝑅

𝑉
𝑇, (1) 

where 𝑛 is the moles of Argon gas, 𝑅 is the gas constant, 𝑉 is 
volume, and 𝑇 is temperature. 

Since this pressure change is time-dependent, taking the 
derivative of pressure in (1) with respect to time yields the final 
ODE (2) for pressure: 

𝑑𝑃

𝑑𝑡
= 𝛼

𝑑𝑇

𝑑𝑡
, (2) 

where 𝛼 =
𝑛𝑅

𝑉
. 

C. Temperature ODE Derivation 

 In considering thermal energy gain and loss within the 

chamber, both can be modeled by the equation describing 

thermal energy of a sample in (3) to characterize temperature 

dependency on heat: 

𝑞𝑔𝑎𝑖𝑛 = 𝑞𝑙𝑜𝑠𝑠 = 𝑚𝑐𝑣∆𝑇 → ∆𝑇 =
𝑞

𝑚𝑐𝑣

 (3) 

where 𝑞 is thermal energy, 𝑐𝑣 is the specific heat capacity of 

Argon gas, 𝑚 is the mass of argon gas, and ∆𝑇 is the 

temperature change from final to initial conditions. 

Considering thermal energy is our driving force and time 

dependent, taking the derivative of (3) with respect to time 

yields the ODE (4) for temperature: 

 
𝑑𝑇

𝑑𝑡
=

1

𝑚𝑐𝑣

𝑞(𝑡) (4) 

However, (4) only describes thermal energy changes within 
the chamber itself. To quantify the thermal energy lost to the 
environment, the heat transfer through the molybdenum 
chamber material in (5) is formulated as follows: 

𝑄 =
𝑘𝐴∆𝑇

𝐿
, (5) 

where 𝑄 is the external heat transfer, 𝑘 is the thermal 
conductivity of solid molybdenum, 𝐴 is the surface area of a 
cylinder, ∆𝑇 is the temperature change from initial conditions 
relative to the current temperature at time 𝑡, and 𝐿 is the 
chamber wall thickness. Note that 𝐴 is not the cross-sectional 
area, but rather the surface area, due to the assumption of 
uniform thermal energy gain and loss across the chamber 
interface between the interior and exterior.  

Therefore, the thermal energy loss consideration in (5) 
modifies (4) to completely characterize the temperature 
change driven by thermal energy, producing the final ODE 
(6) for temperature: 

𝑑𝑇

𝑑𝑡
= 𝛽(𝑞(𝑡) − 𝑄∆𝑡), (6) 

where 𝛽 =
1

𝑚𝑐𝑣
 and ∆𝑡 is the time step denoting the interval at 

which thermal energy is lost. Note that ∆𝑡 is multiplied with 
𝑄 to eliminate time dependency in adherence with the 
simplifying assumption of constant thermal energy loss, 
allowing for (6) to only have temperature 𝐾 as it’s SI unit. 

 

III. OPEN LOOP TRANSFER FUNCTION DERIVATION AND BODE 

ANALYSIS 

A.  Derivation 

The open loop transfer function is defined as the product 

of the transfer functions of the PID controller, the time delay 

of the measurement sensor, and the system. The PID 

controller transfer function is defined in (7) as  

𝐹(𝑠) =
𝐾𝑑𝑠2 + 𝐾𝑝𝑠 + 𝐾𝑖

𝑠
 (7) 

and the measurement sensor transfer function (8) is defined as 

𝐺(𝑠) =
1

1 + 𝜏𝑠
. (8) 

where 𝜏 is the time constant of the sensor. The first step in 

deriving the open loop transfer function is to define the input 

and output of our system to derive the system transfer 

function. We define the input of our system as thermal energy 

in the form of heat and our output as temperature. With the 

input and output defined, we perform a Laplace transform on 

(6) and derive (9), the transfer function 
𝑇(𝑠)

𝑞(𝑠)
 to be: 

𝐻(𝑠) =
𝑇(𝑠)

𝑞(𝑠)
=

1

𝑠 + 𝛽𝑧Δ𝑡
, (9) 

where 𝑧 =
𝑘𝐴

𝐿
. Note that 𝑄 was deconstructed to isolate 𝑇(𝑠), 

notated as the new variable 𝑧. When the Laplace transform is 

performed, we can disregard the environmental temperature 

because it is not a value that is expected to change. 

Substituting our individual transfer functions into the open 

loop transfer function results in (10):  

𝑂𝐿(𝑠) = 𝐹(𝑠)𝐺(𝑠)𝐻(𝑠) =
𝐾𝑑𝑠2 + 𝐾𝑝𝑠 + 𝐾𝑖

𝑠(1 + 𝜏𝑠)(𝑠 + 𝛽𝑧Δ𝑡)
 (10) 



  

Additionally plugging in the known constants in Table 1 

yields (11), the final form used to calculate the PID 

coefficients: 

𝑂𝐿(𝑠) =
𝐾𝑑𝑠2 + 𝐾𝑝𝑠 + 𝐾𝑖

28409.1𝑠2 + 286590.4𝑠 + 24995
 (11) 

Table I: Parameter Definitions 

𝜏 (seconds) 0.1 

∆𝑡 (seconds) 0.5 

𝛽 (K∙J-1) 3.581808365527200e-06 

𝑧 (J∙s-1K-1) 4.999051541836209e+04 

 

For our system to be ideal, we want to cancel out the poles 

that are produced by the product of the transfer functions for 

our measurement sensor and our system. To do this we set 𝐾𝑑, 

𝐾𝑝, and 𝐾𝑖 equal to the constant values in the denominator of 

equation (11), so 28409.1, 286590.4, and 24995 respectively. 

Once those values are set and the two negative poles of the 

system are canceled out, the open loop transfer function 

simply reduces to (12): 

𝑂𝐿(𝑠) =
1

𝑠
 (12) 

B. Bode Analysis 

 The results of our open loop transfer function is a bode plot 

representative of a singular pole at zero. This is attributed to 

the open loop transfer function resulting in three poles, where 

two of which were negative and one at zero, and two zeros. 

However, to enhance the stability of our PID controlled 

system, we decided to cancel out the two negative poles with 

the two zeros. Looking at figure 3 which demonstrates the 

bode plot for the derived open loop transfer function, we see 

that our system is a singular pole, decreasing 20 dB/decade 

starting at zero. More importantly from the open loop transfer 

function and the resulting bode plot, we observe that our 

system is indeed stable. The transfer function doesn’t result in 

any positive poles that would indicate instability and the 

phase plot of the bode in figure 1 tells us that there is a phase 

margin of 90º, which also indicated a very stable system. In 

addition to the stability of our system, from our open loop 

result, we also find there to be zero DC error since the gain is 

infinite at zero, as shown in the magnitude plot in figure 1. 

 

 

 

 
 

 

 

IV. CLOSED LOOP TRANSFER FUNCTION DERIVATION AND 

ANALYSIS 

A. Derivation and Analysis 

After deriving the open loop transfer function OL(s) in 

(10), the standard closed loop transfer function can be 

obtained through (13): 

𝐶𝐿(𝑠) =
𝑂𝐿(𝑠)

1 + 𝑂𝐿(𝑠)
. (13) 

 

If we plug in equation (10) into equation (13) and simplify, 

we found the finalized closed loop transfer function to be: 

 

𝐶𝐿(𝑠) =
𝐾𝑑𝑠2 + 𝐾𝑝𝑠 + 𝐾𝑖

𝜏𝑠3

𝛽
+ (

1
𝛽

+ 𝜏𝑧Δ𝑡 + 𝐾𝑑) 𝑠2 + (𝑧Δ𝑡 + 𝐾𝑝)𝑠 + 𝐾𝑖

, (14)
 

 

whereby plugging in the values of all the known constants 

from Table 1 in (14), the finalized version of the closed loop 

transfer function is derived as: 

𝐶𝐿(𝑠) =
27917.4𝑠2 + 281673.2𝑠 + 24995.25

27917.4𝑠3 + 309590.5𝑠2 + 306668.4𝑠 + 24995.25
 (15) 

 

For the closed loop transfer function in (15), we ended up 

finding that all poles were real and negative, indicating that 

the closed loop system, when taking into consideration the 

effect of feedback and time delay, was still stable. The poles 

for the closed loop system were found to be: -0.08953, -1, 

and -9.999984.  

 

Figure 1: Open loop transfer function bode plot, 

demonstrating the magnitude and phase in relation to 

frequency.  



  

IV. BLOCK DIAGRAM AND SIMULINK RESULTS 

A. Block Diagram 

Figure 2 displays the Simulink block diagram that models 
the temperature control for our HIP Chamber. The step block 
represents the heat input to the system and represents the 
target temperature values that we desire the HIP to stabilize 
and hold at for an extended period. The gain values represent 
the constants 𝛼 and 𝛽 in our final theoretical model of 
temperature (6) and the final conversion of the output 
temperature to pressure using (1). Also seen in Figure 1 is the 
implementation of the time delay transfer function G(s) from 
(8) and the incorporation of the PID controller block which is 
used to correct for the error during the HIP cycle. There is 
also the addition of a constant block to account for the initial 
environmental temperature and pressure assumed to be at 
STP. 

 

 

Figure 2: Simulink divided into Each Functional 
Section: (1) the input, (2) Calculation of dT/dt through 

heat gain and heat loss using a feedback loop and the gain 
value of beta, (3) The conversion of the signal into 

temperature, (4) the conversion of the signal into pressure 
using a gain of alpha, (6) the feedback loop of 

temperature, and (7) the time delay (0.1s). 

 

B. Simulation Results 

After running the simulation of our block diagram through 

Simulink, our resulting temperature and pressure profile is 

shown in Figure 4. The simulation was run for a time step of 

100, which represents a 100-minute HIP cycle because of 

the units used for the Simulink model.  

 

 
 

Figure 3: Pressure in blue (atm) and Temperature in 

yellow (K) vs. Time (min).  

V. DISCUSSION AND FUTURE CONSIDERATIONS 

In figure 3, both the curves for pressure and temperature 

shoot up and then stabilize very quickly. At the beginning of 

the curve, heat gain is significantly greater than heat loss, 

causing a rise in pressure and temperature (which are 

proportionally related).  The curves shoot up and eventually 

overshoot past the target for both pressure and temperature, 

mainly due to the time delay in our system. After 

overshooting, heat gain approaches heat loss and this allows 

the system to lower and stabilize to our target values for 

pressure and temperature. Every measurement made from 

the system is not reported at the exact time its occurring, due 

to measurement time delay. The behavior of the system is 

very similar to an ideal system but occurs very quickly (5 

minutes).  This could be very risky for our HIP Chamber to 

handle a very fast change in temperature and pressure in the 

real world and could possibly be a safety hazard as rapid 

heating could cause bioimplant defects. A rapid increase in 

temperature and pressure caused by non-uniform heating 

results in thermal stresses leading to uneven material 

contractions that compromises structural integrity. This 

behavior is the result of a very high integral coefficient in 

the PID controller. Parameter optimization could be a 

possible solution, this could decrease the amount of argon 

gas, increase volume, increase the pressure reach, and thus 

lead to a lower Ki value in the PID controller.  
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