

BENG 122A Fall 2020

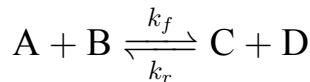
Quiz 1

Tuesday, November 3, 2020

Name (Last, First): SOLUTIONS

- This quiz is open book, open notes, and online, but web search is prohibited. You may follow electronic links from Canvas or the class web pages, but not any further. **No collaboration or communication in any form is allowed**, except for questions to the instructor and TAs.
- The quiz is due November 4, 2020 at 11:59pm, over Canvas. It should approximately take 2 hours to complete, but there is no time limit other than the submission deadline. Do not discuss any class-related topics among yourselves before or after you have completed your quiz, and until the submission deadline has passed.
- There are 3 problems. Points for each problem are given in **[brackets]**. There are 100 points total.

1. [35 pts] Consider the following biochemical reaction taking place in an organ in the body:



where compounds A and B combine to generate compounds C and D at rate k_f , and C and D recombine to regenerate A and B at rate k_r .

(a) [5 pts] Show that if compounds B and C are present at much higher concentrations than either A or D, then you may assume that their concentrations are approximately constant, $[B] \approx [B]_0$ and $[C] \approx [C]_0$.

$$\begin{aligned} \frac{d}{dt}[A] &= -\frac{d}{dt}[B] = -\frac{d}{dt}[C] = -\frac{d}{dt}[D] = \\ &= -k_f [A][B] + k_r [C][D] \end{aligned}$$

Every mol change in B or C requires a mol change of same magnitude in A and in D, where A and D move in opposite directions.

Therefore, and because A and D are always positive, B and C cannot change more than the larger amount of A and D currently present.

If B and C are present in much greater amounts, then the relative change in B and C must be very small.

Hence we can approximate [B] and [C] to be relatively constant.

$$[B]_0 - \underbrace{[A]_0}_{\ll [B]_0} \leq [B] \leq [B]_0 + \underbrace{[D]_0}_{\ll [B]_0} \Rightarrow [B] \approx [B]_0$$

$$[C]_0 - \underbrace{[D]_0}_{\ll [C]_0} \leq [C] \leq [C]_0 + \underbrace{[A]_0}_{\ll [C]_0} \Rightarrow [C] \approx [C]_0$$

(b) [10 pts] Under those assumptions, and further assuming that both A and D exit the volume V of the organ at a flow rate Q , while B and C recirculate in the organ without decay, write the ODEs in the concentrations $[A]$ and $[D]$ that describe both the kinetics and the flow.

$$\left\{ \begin{array}{l} \frac{d}{dt} [A] = -\frac{Q}{V} [A] - k_f [A][B]_0 + k_n [C]_0 [D] \\ \frac{d}{dt} [D] = -\frac{Q}{V} [D] + k_f [A][B]_0 - k_n [C]_0 [D] \end{array} \right.$$

$$\text{Let: } \alpha = \frac{Q}{V}$$

$$b = k_f [B]_0$$

$$c = k_n [C]_0 \quad \text{constants}$$

$$\left\{ \begin{array}{l} \frac{d}{dt} [A] = -(\alpha + b) [A] + c [D] \\ \frac{d}{dt} [D] = b [A] - (\alpha + c) [D] \end{array} \right.$$

(c) [5 pts] Find the equilibrium (i.e., the steady-state) concentrations.

$$\left\{ \begin{array}{l} \frac{d}{dt} [A] = -(\alpha + \beta) [A] + \gamma [D] = 0 \\ \frac{d}{dt} [D] = \beta [A] - (\alpha + \gamma) [D] = 0 \end{array} \right.$$

$$\alpha \neq 0 \Rightarrow [A]_{s.s.} = [D]_{s.s.} = 0$$

$$\text{and} \quad [B]_{s.s.} = [B]_0$$

$$[C]_{s.s.} = [C]_0$$

(d) [15 pts] Use Laplace transforms to find the concentration $[A]$ as a function of time, starting from initial conditions $[A](0) = [A]_0$ and $[D](0) = 0$.

$$\begin{cases} s[A](s) - [A]_0 = -(\alpha + \beta)[A](s) + c[D](s) \\ s[D](s) - \underbrace{[D]_0}_{=0} = \beta[A](s) - (\alpha + c)[D](s) \end{cases}$$

$$\begin{cases} (s + \alpha + \beta)[A](s) = [A]_0 + c[D](s) \\ (s + \alpha + c)[D](s) = \beta[A](s) \end{cases}$$

$$(s + \alpha + \beta)(s + \alpha + c)[A](s) = (s + \alpha + c)[A]_0 + \beta c[A](s)$$

$$[A](s) = \frac{s + \alpha + c}{(s + \alpha + \beta)(s + \alpha + c) - \beta c} [A]_0 = \frac{s + \alpha + c}{(s + \alpha)(s + \alpha + \beta + c)} [A]_0$$

$$[A](s) = \frac{1}{\beta + c} \left(\frac{c}{s + \alpha} + \frac{\beta}{s + \alpha + \beta + c} \right) [A]_0$$

$$[A](t) = \frac{1}{\beta + c} \left(c e^{-\alpha t} + \beta e^{-(\alpha + \beta + c)t} \right) [A]_0$$

$$[A](t) = \frac{k_r [C]_0 + k_f [B]_0 e^{-\left(k_r [C]_0 + k_f [B]_0\right)t}}{k_r [C]_0 + k_f [B]_0} e^{-\frac{Q}{V}t} [A]_0$$

2. [40 pts] Consider the following set of ODEs describing the dynamics of a biomechanical system with mass m and damping γ , with force $f(t)$ driving the input, and with position $u(t)$ at the output:

$$\begin{aligned}\frac{du}{dt} &= v(t) \\ m \frac{dv}{dt} &= -\gamma v(t) + f(t).\end{aligned}$$

(a) [5 pts] Find the Laplace transform of position $u(s)$ as a function of the Laplace transform of the force $f(s)$, and initial conditions in position $u(0) = u_0$ and velocity $v(0) = v_0$.

$$s u(s) - u_0 = v(s)$$

$$m(s v(s) - v_0) = -\gamma v(s) + f(s)$$

$$m(s(s u(s) - u_0) - v_0) = -\gamma(s u(s) - u_0) + f(s)$$

$$(m s^2 + \gamma s) u(s) = m u_0 s + m v_0 + \gamma u_0 + f(s)$$

$$u(s) = \frac{m u_0 s + m v_0 + \gamma u_0}{s(m s + \gamma)} + \frac{1}{s(m s + \gamma)} f(s)$$

 $m u_0 s + m v_0 + \gamma u_0$

$\mathcal{L}(b)$

 $\frac{1}{s(m s + \gamma)}$

$\mathcal{L}(c)$

(b) [10 pts] For zero force $f(t) \equiv 0$, and for given initial conditions $u(0) = u_0$ and $v(0) = v_0$, find the position $u(t)$ as a function of time.

$$u(s) = \frac{m u_0 s}{(m s + \gamma) s} + \frac{m v_0 + \gamma u_0}{(m s + \gamma) s} \quad (f(s) = 0)$$

$$= \frac{u_0}{s + \frac{\gamma}{m}} + \left(v_0 + \frac{\gamma}{m} u_0 \right) \underbrace{\frac{1}{(s + \frac{\gamma}{m}) s}}_{= \frac{m}{\gamma} \left(\frac{1}{s} - \frac{1}{s + \frac{\gamma}{m}} \right)}$$

$$= \frac{u_0}{s + \frac{\gamma}{m}} + \left(\frac{m}{\gamma} v_0 + u_0 \right) \left(\frac{1}{s} - \frac{1}{s + \frac{\gamma}{m}} \right)$$

$$= \frac{u_0}{s} + \frac{m}{\gamma} v_0 \left(\frac{1}{s} - \frac{1}{s + \frac{\gamma}{m}} \right)$$

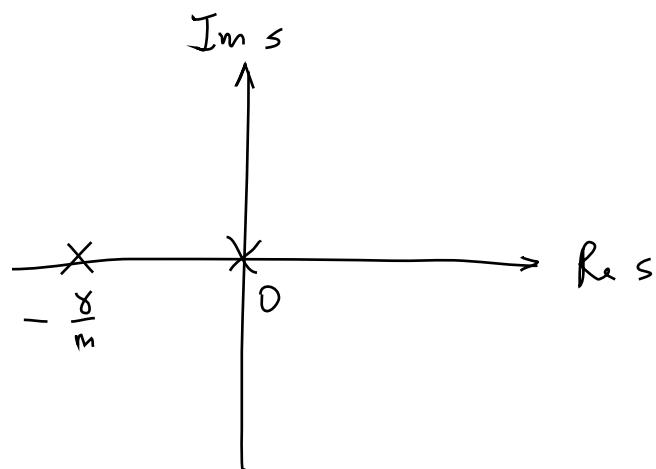
$$u(t) = u_0 + \frac{m}{\gamma} v_0 \left(1 - e^{-\frac{\gamma}{m} t} \right)$$

(c) [5 pts] Find the transfer function $H(s) = u(s)/f(s)$ of the system, and find the poles and zeros.

$$H(s) = \frac{u(s)}{f(s)} = \frac{1}{s(ms + \gamma)}$$

- ZEROS : NONE

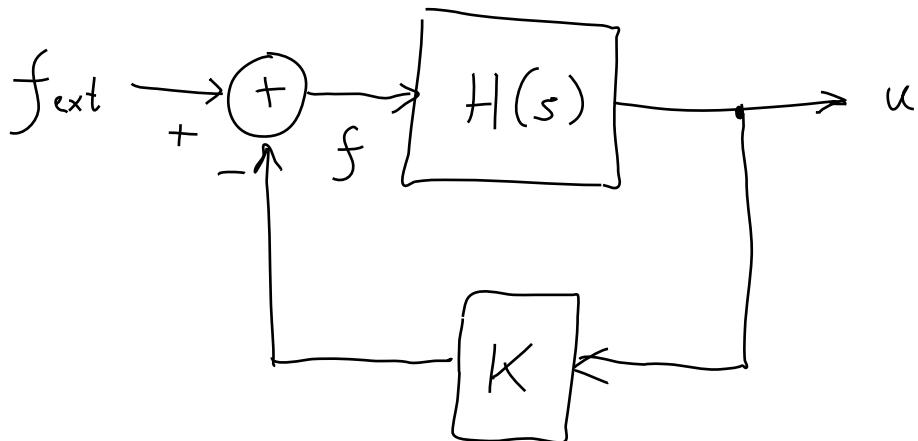
- POLES : $\begin{cases} P_1 = 0 \\ P_2 = -\frac{\gamma}{m} \end{cases}$



(d) [10 pts] Now consider closed-loop feedback, in which the force $f(t)$ is given by

$$f(t) = f_{ext}(t) - K u(t)$$

where $f_{ext}(t)$ is the externally applied force, and K is the feedback gain. Draw the closed-loop system block diagram, and find the closed-loop transfer function $F(s) = u(s)/f_{ext}(s)$.



$$u(s) = H(s) f(s) = H(s) (f_{ext}(s) - K u(s))$$

$$\begin{aligned} F(s) &= \frac{u(s)}{f_{ext}(s)} = \frac{H(s)}{1 + K H(s)} \\ &= \frac{1}{m s^2 + \gamma s + K} \end{aligned}$$

(e) [10 pts] Find the value of the feedback gain K that minimizes the settling time of the closed-loop system. *Hint:* you may make approximate arguments. Think of settling time in terms of the poles of the system.

$$\text{Poles : } m s^2 + \gamma s + K = 0$$

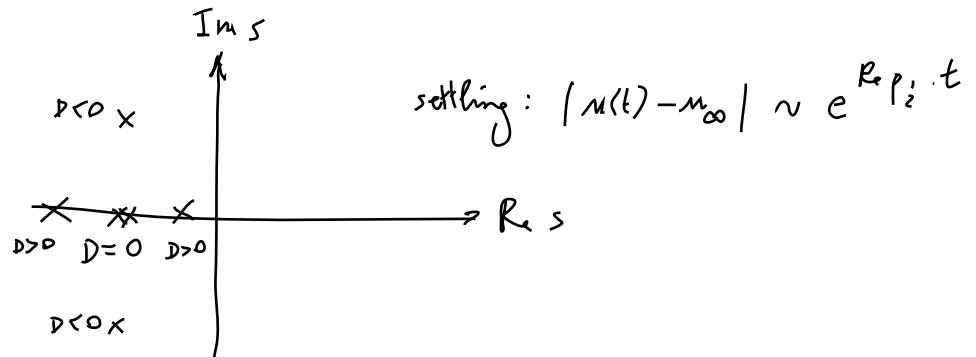
$$p_1 = -\frac{\gamma}{2m} \pm \frac{\sqrt{\gamma^2 - 4Km}}{2m}$$

Overdamped (discriminant $D > 0$): Two real poles; slow settling and rise time.

Critically damped ($D = 0$): Two identical poles; fast settling and rise time.

Underdamped ($D < 0$): Two complex conjugate poles; faster rise time, but not faster settling.

The critically damped case gives the fastest settling, without ringing.



$$D = \gamma^2 - 4Km = 0 \quad \Rightarrow \quad K = \frac{\gamma^2}{4m}$$

3. [25 pts] Linear time invariant biosystems:

(a) [5 pts] Give two possible explanations of biophysical phenomena that cause non-zero pressure across a vessel.

1. Resistance in flow due to blood viscosity

2. Height differences under gravity

Others (many are possible!):

3. Velocity nonuniformity due to differences in diameter

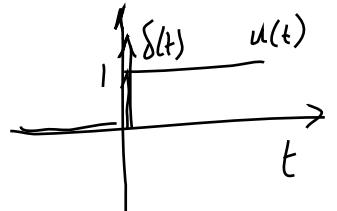
4. Active pumping (forces acting on the vessel walls)

etc...

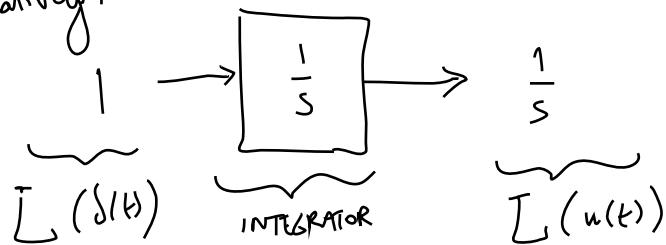
(b) [10 pts] What is the time integral of the Delta-Dirac impulse? And what is the time integral of the impulse response of a linear time-invariant system? Explain the connection between the two.

The time integral of the Delta-Dirac impulse is a step function.

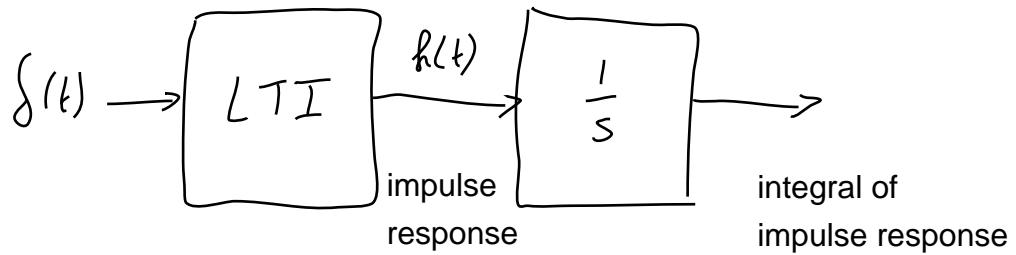
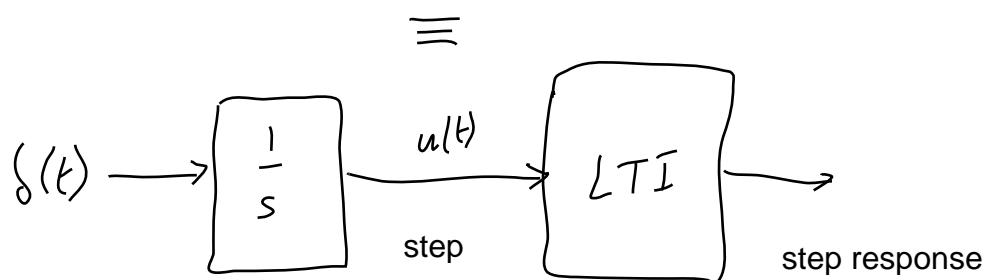
$$u(t) = \int_{-\infty}^t \delta(t) dt = \begin{cases} 0 & \text{for } t < 0 \\ 1 & \text{for } t > 0 \end{cases}$$



Alternatively:



The time integral of the impulse response of a LTI system is the step response of that LTI system.



(c) [10 pts] Show that the linear time-invariant system given by the ODE

$$\frac{du}{dt} = A u(t) + f(t) \quad (1)$$

with initial condition $u(0) = u_0$ is equivalent, for all strictly positive times $t > 0$, to a system with the same ODE and zero initial conditions $u(0) = 0$ but with modified force $f(t) + u_0 \delta(t)$, i.e., by absorbing the initial condition as an initial "kick" in the force. Hint: consider left and right limits of $u(t)$ at time $t = 0$.

The effect of the "kick" is to step the state variable, from zero to the same level as the initial condition:

$$u(0^+) = u(0^-) + \int_{0^-}^{0^+} (A u(t) + f(t) + u_0 \delta(t)) dt$$

↓ ↓
immediately immediately
after $t=0$ before $t=0$

= u_0 !

Alternatively:

$$s u(s) - 0 = A u(s) + \left(f(s) + u_0 \cdot 1 \right)$$

↓
 $\mathcal{L}(s(t))$

is equivalent to:

$$s u(s) - u_0 = A u(s) + f(s)$$

↓
I.C.
 $u(0)$