

Pulse Oximeter with Digital Readout of SpO₂ and Heart Rate

Alex Lu, Eeman Iqbal, Taiming Chen, Longyu Zhang

Blood Oxygen Saturation

- Healthy level of O₂ saturation > 95%
- Hypoxemia - low oxygen level in blood
 - Danger to organs
 - Can result in hypoxia (low oxygen levels in body tissues)
 - Hard to visually detect unless O₂ saturation below 80% [Jubran 1999]
- Respiratory problems related to low blood oxygen levels
 - Asthma
 - Obstructive Sleep Apnea
 - Covid-19

Example of Disorders that Cause Hypoxemia

- **Asthma**
 - Airways blocked - difficulty breathing
 - Hypoxemia correlates with increased severity of attack [Solé et al. 1999]
- **Obstructive Sleep Apnea (OSA)**
 - Loud snoring, gasping, or choking during sleep
 - Difficult to diagnose - often requires sleep study
 - Can lead to heart failure
 - Early confirmation and treatment helps prevent complications [Chiang et al. 2018]
- **Covid -19**
 - Respiratory virus
 - Oxygen saturation lower than 90% indicates severe case

Bioinstrument - Pulse Oximeter (Transmission)

- Digital readout of SpO_2 (arterial blood oxygen saturation) and heart rate
- Benefits
 - Non-invasive
 - Accuracy within 2-3% [Jubran 1999]
- Function
 - Light-emitting diodes (LEDs) - red and infrared (IR)
 - Photodiode receives light transmitted
 - SpO_2 from ratio of absorbances at above wavelengths
 - oxyhemoglobin (HbO_2)
 - reduced hemoglobin (Hb)
 - Finds heart rate using IR signal

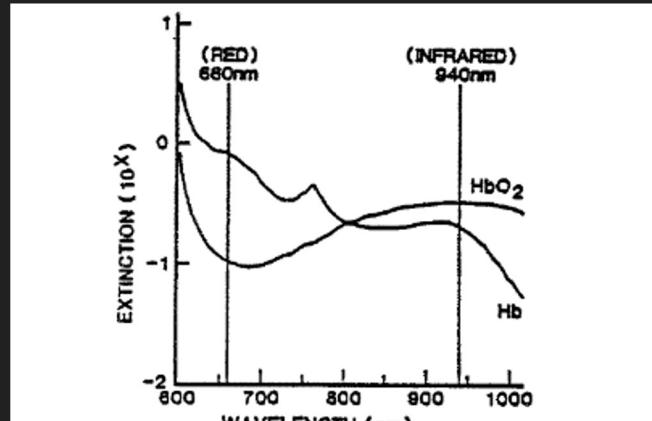
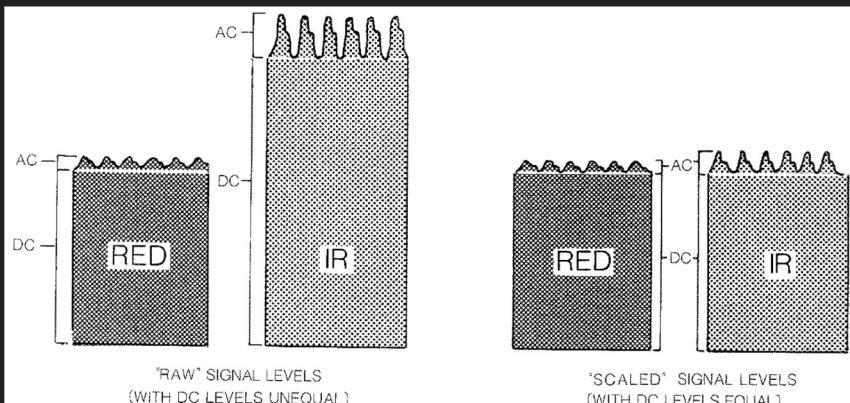



Fig 1. Oxyhemoglobin (HbO_2) and reduced hemoglobin (Hb) exhibit markedly different absorption (extinction) characteristics relative to red light at 660 nm and infrared light at 940 nm. (Courtesy of Ohmeda)

(Wukitsch 1988)

Finding SpO_2

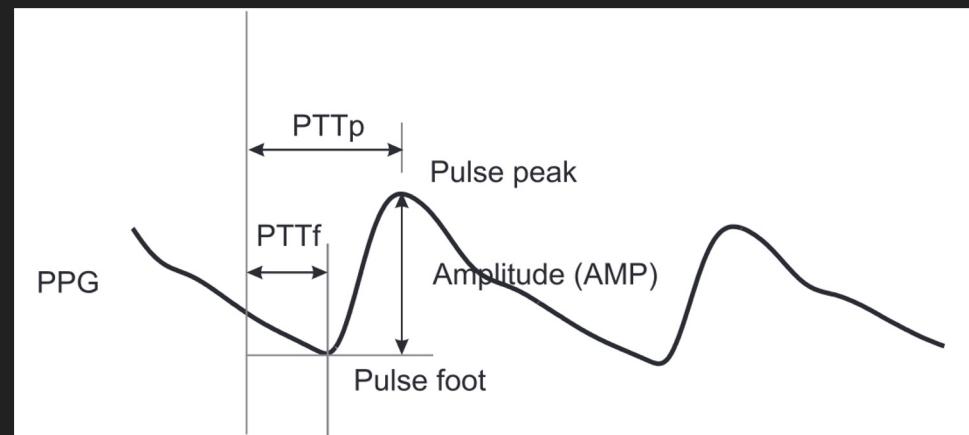
- Signal from light transmitted through tissue
- At single wavelength:
 - Tissue absorbance proportional to (AC signal)/(DC signal)
 - Using ratios means the numbers will scale to each other

Demonstration of scaling [Wukitsch et al. 1988]

$$R = \frac{\frac{AC(\lambda_{Red})}{DC(\lambda_{Red})}}{\frac{AC(\lambda_{IR})}{DC(\lambda_{IR})}}$$

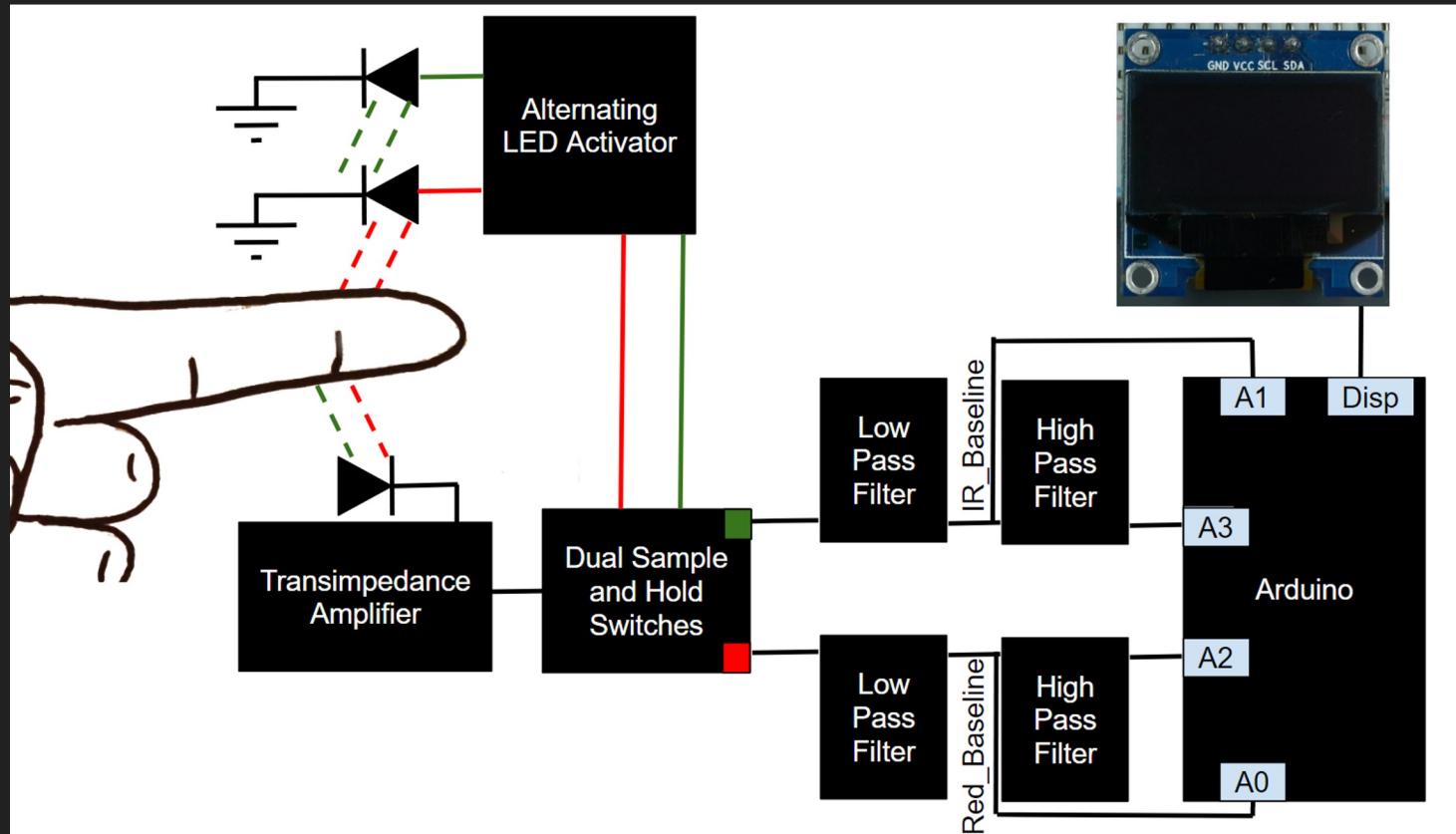
R: ratio of tissue absorbances

$$\text{SpO}_2 = 110 - (25 \times R)$$

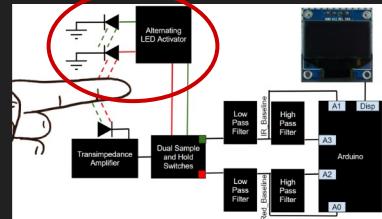
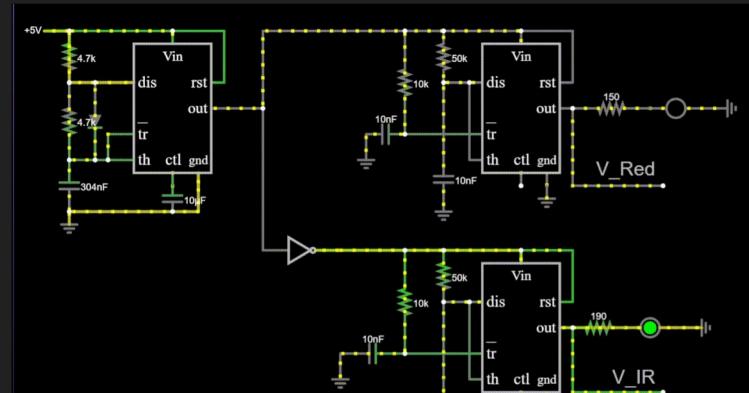

Equation for SpO_2

Finding Heart Rate

- Uses photoplethysmography (PPG)
 - Transmitted signal of IR light through tissue
 - Proportional to blood volume variations [Castaneda et al. 2018]
- Heart rate
 - contractions per minute
 - Found from peaks in PPG signal


$$HR = \frac{60}{T_{pp}}$$

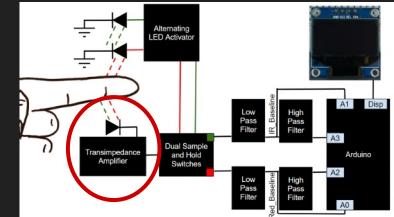
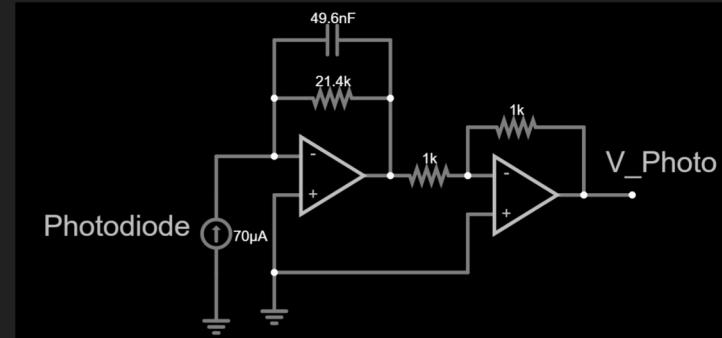
T_{pp} = time between peaks



[Allen 2007]

Big Picture

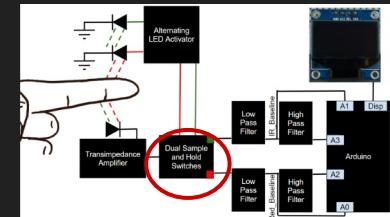
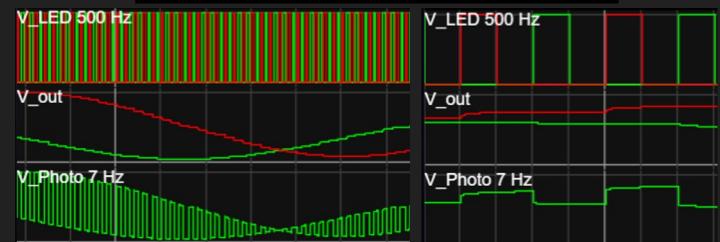
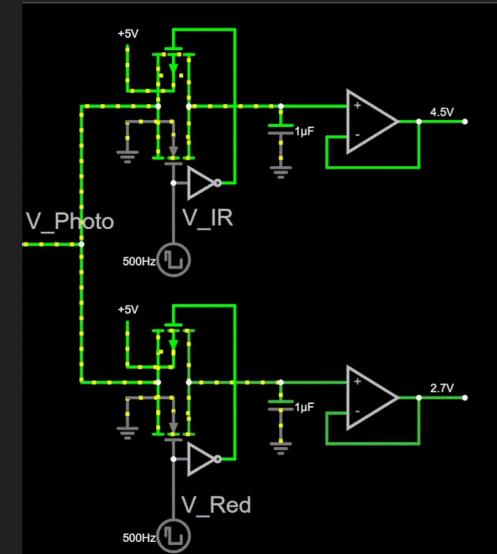
Alternating LED Activator

- **Astable Oscillator (555 Timer)**
 - Diode from Discharge to Trigger for 50% duty cycle
 - $T = 0.7RC = 0.001$ Sec (50% Duty) $\rightarrow 500$ Hz pulse rate
- **Two Monostable Oscillators**
 - Connected together with an inverter to create alternating pattern
 - $T_{on} = 1.1 \times R(50k) \times C(10n) = 0.0005$ Sec (25% Duty)
 - Lower duty cycle = less heat, less power consumption
- **LED**
 - Red \rightarrow forward 2V, 20mA
 - LED Resistor = $(5V-2V) / 0.02 = 150 \Omega$
 - Infrared \rightarrow forward 1.2V, 20mA
 - LED Resistor = $(5V-1.2V) / 0.02 = 190 \Omega$
- **Output: V_Red and V_IR for later**

Transimpedance Amplifier (TIA)

$$\frac{V_{photo}}{I_{photo}} = -Z_{top}$$




- Goal: Convert current output from photodiode to voltage
- Photodiode outputs current from $\sim 0 - 70 \mu\text{A}$ [Duun 2007]
- Want V_{Photo} between 0 - 1.5V
 - R is set to 21400 ohm
- A capacitor is added in parallel to the resistor
 - Act as a low pass filter to filter out noise ($f_c = 150\text{Hz}$)
 - Cutoff frequency ($2\pi f_c = 1/RC$)
 - Capacitor set to 49.6 nF
- Inverting amplifier
 - Gain of -1 to ensure voltage remain positive for sample and switch stage

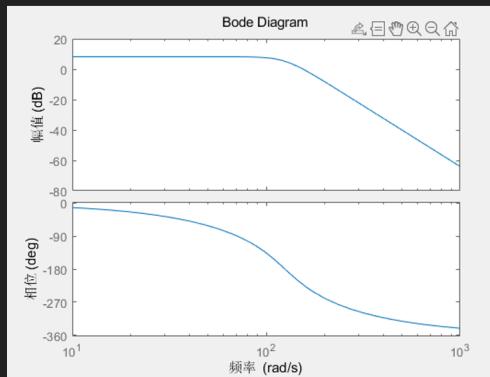
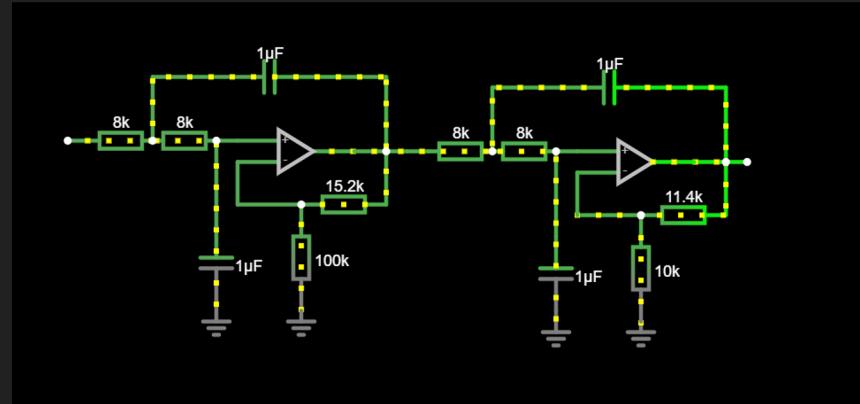
$$Z_{top} = Z_C || Z_R = \frac{R}{jwRC+1}$$

Dual Sample and Hold Switches

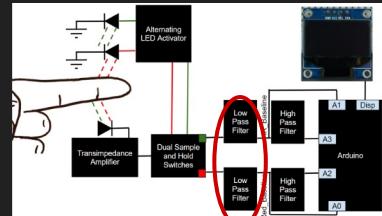
- Switch - Transmission gate
 - n-channel MOSFET and p-channel MOSFET connected in parallel with drain and source connected
 - Gate of each mosfet connected with an inverter
 - Current can flow both ways depending on the voltage difference between source and drain
- Sample and Hold
 - When the switch turn on from V_IR or V_Red, the capacitor charges or discharges to match V_Photo
 - Capacitor (1uF) - low to enable faster charging but large enough to prevent leak

Low Pass Filter

Poles	Butterworth (DC Gain H_0)	Chebyshev (0.5dB)		Chebyshev (2.0dB)	
		λ_n	Gain	λ_n	Gain
2	1.586	1.231	1.842	0.907	2.114
4	1.152	0.597	1.582	0.471	1.924
	2.235	1.031	2.660	0.964	2.782
6	1.068	0.396	1.537	0.316	1.891
	1.586	0.768	2.448	0.730	2.648
	2.483	1.011	2.846	0.983	2.904
	1.038	0.297	1.522	0.238	1.879
	1.337	0.599	2.379	0.572	2.605
8	1.889	0.861	2.711	0.842	2.821
	2.610	1.006	2.913	0.990	2.946



Table I Design Table for Butterworth and Chebyshev filters

$$f_C = \frac{1}{2\pi RC} = 19.89 \text{ Hz}$$

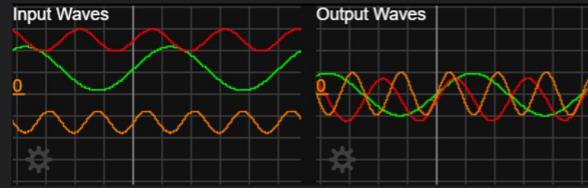
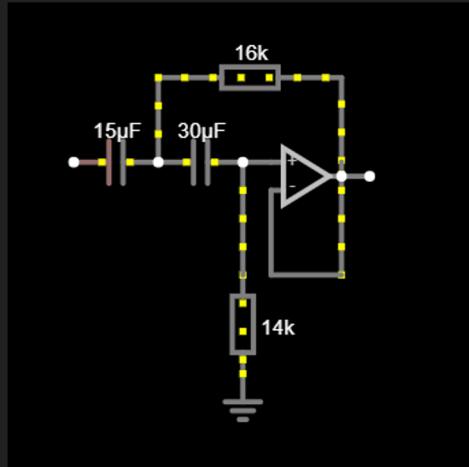
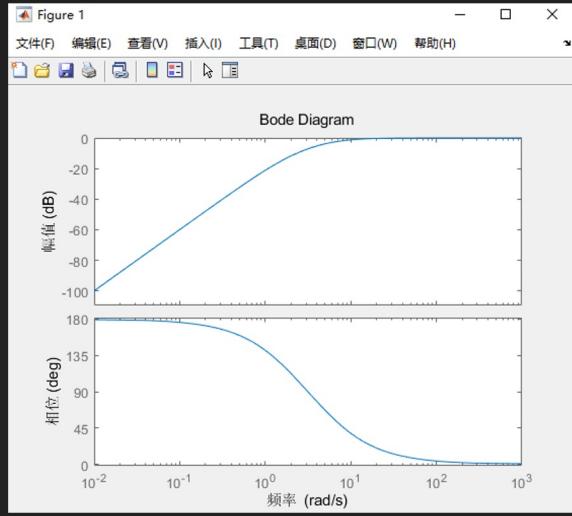


$$\begin{aligned}
 H(s) &= H1(s) * H2(s) \\
 &= \frac{1.152}{(sCR)^2 + 1.848sCR + 1} * \frac{2.235}{(sCR)^2 + 0.765sCR + 1} \\
 &= \frac{2.5747}{(sCR)^4 + 2.6131(sCR)^3 + 3.4142(sCR)^2 + 2.6131(sCR) + 1}
 \end{aligned}$$

Gain of 2.5747

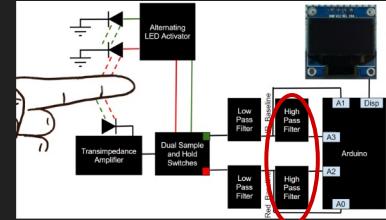
Signal range: 0 - 3.862 V

Goal: Filter out noise above 20 Hz
(Shimizu, Hatano, & Shimoyama, 2012)

High Pass Filter

$$f_C = \frac{1}{2\pi\sqrt{R_1C_1R_2C_2}} = 0.501\text{Hz}$$


(Shimizu, Hatano, & Shimoyama, 2012)

$$\frac{V_{out}(s)}{V_{in}(s)} = \frac{s^2}{s^2 + s(\frac{1}{R_2C_1} + \frac{1}{R_2C_2}) + \frac{1}{R_1C_1R_2C_2}} = \frac{s^2}{s^2 + 7.1429s + 9.9206}$$

Goal: Obtain the AC component

Active high pass filter set to filter out frequencies below 0.5 Hz, which removes the DC offset as shown in the simulation plots

Arduino

```

#include <Wire.h>
#include <Adafruit_SSD1306.h>

#define OLED_RESET 4
Adafruit_SSD1306 display(OLED_RESET);

const int redDCPin = A0; // Analog input pin for DC signal from red LED
const int irDCPin = A1; // Analog input pin for DC signal from IR LED
const int redACPin = A2; // Analog input pin for AC signal from red LED
const int irACPin = A3; // Analog input pin for AC signal from IR LED

const int numSamples = 1000; // Number of samples to average for each
reading

// Function to find the time between peaks in the given signal
float findPeakTime(int signalPin) {
    int threshold = 512; // Threshold for peak detection
    int peakCount = 0; // Count of peaks found
    float lastValue = analogRead(signalPin); // Last value of the signal
    float peakTime = 0.0; // Time of the last peak found
    float sampleRate = 1000.0 / numSamples; // Sample rate in Hz

    // Iterate over the samples in the signal
    for (int i = 0; i < numSamples; i++) {
        float value = analogRead(signalPin);
        if (lastValue < threshold && value >= threshold) {
            // A peak has been found
            if (peakCount == 0) {
                // This is the first peak found
                peakTime = i * (1.0 / sampleRate);
            } else if (peakCount == 1) {
                // This is the second peak found, return the time between them
                return i * (1.0 / sampleRate) - peakTime;
            }
            peakCount++;
        }
        lastValue = value;
    }

    // No peaks were found
    return 0.0;
}

void setup() {
    // Initialize the OLED display
    display.begin(SSD1306_SWITCHCAPVCC, 128, 32);

    // Print a message to the display
    display.clearDisplay();
    display.setTextSize(1);
    display.setTextColor(WHITE);
    display.setCursor(0, 0);
    display.println("SpO2 & Heart Rate");
    display.display();
    delay(1000);
}

```

Find peaks

```

void loop() {
    // Read the DC signals from the analog inputs
    int redDC = analogRead(redDCPin);
    int irDC = analogRead(irDCPin)
}

```

DC recording

```

    // Read the AC signals and average over numSamples
    readings
    float redAC = 0.0;
    float irAC = 0.0;
    for (int i = 0; i < numSamples; i++) {
        redAC += analogRead(redACPin);
        irAC += analogRead(irACPin);
    }
    redAC /= numSamples;
    irAC /= numSamples;
}

```

AC recording

```

    // Calculate the ratio of AC to DC signals for both
    red and IR
    float redRatio = redAC / redDC;
    float irRatio = irAC / irDC;
}

```

SpO2

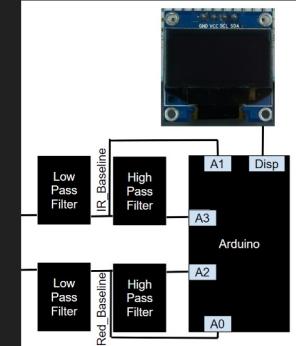
```

    // Calculate SpO2 using the ratio of red and IR
    signals
    float ratio = redRatio / irRatio;
    float SpO2 = 110 - 25 * ratio;
}

```

Heart rate

```


    // Calculate heart rate by finding the time between
    peaks in the AC signals
    float redPeakTime = findPeakTime(redAC);
    float irPeakTime = findPeakTime(irAC);
    float heartRate = 60.0 / (0.5 * (redPeakTime +
    irPeakTime));
}

```

```

    // Display the results on the OLED display
    display.clearDisplay();
    display.setCursor(0, 0);
    display.print("SpO2: ");
    display.println(SpO2);
    display.print("Heart Rate: ");
    display.println(heartRate);
    display.display();
    delay(1000);
}

```


Limitations/Future Directions

- Accuracy: Various factors could affect the accuracy, such as motion artifacts, skin pigmentation, poor contact, and ambient light.
- Noise: Susceptible to noise, which can affect the accuracy of the measurements.
- Battery Life: Consume a lot of power, which reduces the longevity of pulse oximeter.
- Complexity: Difficult to manufacture and maintain due to the complexity.
- Simulation: While simulators are powerful, they may not always perfectly reflect the real-world performance.

References

Allen, John. Photoplethysmography and its application in clinical physiological measurement *Physiol. Meas.* (2007) 28 R1

Castaneda D, Esparza A, Ghamari M, Soltanpur C, Nazeran H. A review on wearable photoplethysmography sensors and their potential future applications in health care. *Int J Biosens Bioelectron.* 2018;4(4):195-202. doi: 10.15406/ijbsbe.2018.04.00125. Epub 2018 Aug 6. PMID: 30906922; PMCID: PMC6426305.

Chiang LK. Overnight pulse oximetry for obstructive sleep apnea screening among patients with snoring in primary care setting: Clinical case report. *J Family Med Prim Care.* 2018 Sep-Oct;7(5):1086-1089. doi: 10.4103/jfmpc.jfmpc_142_18. PMID: 30598963; PMCID: PMC6259496.

Duun, S., Haahr, R. G., Birkelund, K., Raahauge, P., Petersen, P., Dam, H., Noergaard, L., & Thomsen, E. V. (2007). A Novel Ring Shaped Photodiode for Reflectance Pulse Oximetry in Wireless Applications. In *Proceedings of the 6th IEEE Conference on Sensors* (pp. 596-599). IEEE. <https://doi.org/10.1109/ICSENS.2007.4388469>

Jubran A. Pulse oximetry. *Crit Care.* 1999;3(2):R11-R17. doi: 10.1186/cc341. PMID: 11094477; PMCID: PMC137227.

Solé D, Komatsu MK, Carvalho KV, Naspitz CK. Pulse oximetry in the evaluation of the severity of acute asthma and/or wheezing in children. *J Asthma.* 1999 Jun;36(4):327-33. doi: 10.3109/02770909909068225. PMID: 10386496.

Wukitsch MW, Petterson MT, Tobler DR, Pologe JA. Pulse oximetry: analysis of theory, technology, and practice. *J Clin Monit* 1988;4:290-301

T. Shimizu, Y. Hatano, and H. Shimoyama, "Design and control of a pneumatically actuated origami-inspired robot," *AIP Advances* 2, 042187 (2012); DOI: 10.1063/1.4759491.