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Abstract - This paper presents the design of the
signal processing unit of the EEG circuit aimed at
improving the accuracy and reliability of EEG as
a diagnostic tool in general and for early diagnosis
of Alzheimer’s disease (AD). Our circuit design
removes power line noise and unnecessary brain
waves, such as δ and θ waves, from the electrode
signals and amplifies brain signals from
microvolts to volts. As a result, EEG signals slow
down in AD patients, with increased power in low
frequencies and decreased power in higher
frequencies. The circuit design methodology, data
acquisition, signal processing, and algorithm
development are provided throughout this paper.
Results show that the circuit effectively removes
power line noise and unnecessary brain waves,
leading to more reliable AD detection through
nonlinear dynamical analysis and spectral
analysis. Furthermore, by improving the accuracy
of EEG signal processing, the circuit designed has
the potential to enable earlier detection of AD,
thus contributing to better outcomes for patients.

I. INTRODUCTION

Alzheimer’s disease (AD) is a progressive
neurological disorder affecting millions worldwide.
AD symptoms include cognitive decline, memory
loss, and changes in behavior and personality.
Although there is no immediate cure for AD, early
detection and intervention can improve patient
outcomes and delay the progression of the disease.
Electroencephalography (EEG) is a non-invasive
technique that measures and records the brain's
electrical activity, providing valuable information
about brain function and abnormalities.

EEG is used in diagnosing and monitoring
neurological disorders, including AD. Studies have
shown that changes in brain wave patterns,
specifically the slowing down of α and β waves, can
be an early indicator of AD. EEG signals slow down
in AD, with increased power in low frequencies and

decreased power in higher frequencies. In addition, γ
frequency band power increases in AD patients, and
transient oscillations occur more often at low
frequencies, indicating further slowing down. In this
research paper, we propose designing and developing
an EEG circuit to detect this slowing down of α and β
waves. The designed six-stage circuit filters and
amplifies raw EEG signals to be processed and
analyzed by computers.

The potential impacts of this work are
significant. Early detection and intervention can
improve patient outcomes, delay the progression of
AD, and reduce the economic and social burden on
individuals, families, and society. Furthermore,
developing an accurate and reliable EEG system can
have long-lasting and vast impacts on
Brain-Computer Interfacing. Ultimately, our research
aims to contribute to developing practical and
accessible diagnostic tools for AD.

II. PHYSIOLOGY

The fundamental mechanisms underlying
AD involve the Amyloid Precursor Protein’s (APP)
expression in the brain. Although APP’s complete
function is unknown, its movement throughout the
body is not. Under normal circumstances, APP is
cleaved by α-secretase and β-secretase to generate a
waste product cleared efficiently by the body.
However, in AD patients, APP is cleaved by
γ-secretase and β-secretase, forming a 42 amino-acid
long polypeptide chain known as Amyloid β (Aβ).
Aβ contains "sticky ends," which cause multiple Aβ
proteins to stick to one another, forming oligomers, a
neurotoxic plaque in the brain that builds up over
time.



Furthermore, Tau, a protein that forms
microtubules within neurons, dissociates in AD
patients, forming neurofibrillary tangles that cause
cognitive dysfunction for AD patients. These
cognitive dysfunctions can be detected in changes in
the α and β waves picked up in our EEG circuit,
detailed further below.

III. METHODS

The bioinstrument used is a six-stage EEG
circuit that takes in signals from three electrodes and
outputs an amplified and filtered signal ready for
analysis. The purpose of the circuit is to filter out
unwanted signals and amplify the signal enough to
make it simple to work with; raw EEG signals are on

the order of µV, which is too small for many
processing machines and software to use. The circuit

components used are a ± 9V power supply,
electrodes, wires, resistors, capacitors, a

potentiometer, an instrumentation amplifier, and
operational amplifiers. The inputs to the circuit are
two active electrodes connected to different regions
on the head, while the third electrode is grounded to

act as a reference.

The circuit’s first stage is an instrumentation
amplifier intended to amplify the signals enough to
read them. The amplifier used is an AD620AN with a
gain formula of 1 + 49400 / RG. In order to have a
gain of roughly 90 V/V, one can use a resistor of
560Ω, yielding a gain of 89.2 V/V. This gain is not
high enough to output a usable signal, but the gain



cannot be made much higher because the
common-mode voltage gain increases with the
differential gain. Therefore, only part of the gain is
assigned to the instrumentation amplifier to reduce
common-mode voltage gain. The other portion is
resolved with an operational amplifier in stage 5.

The second stage is a 60 Hz notch filter. The
powerlines in the United States have a signal
frequency of roughly 60 Hz, which can disrupt the
desired EEG signal. Because of this, the designed
notch filter diminishes the amplitude of 60 Hz signals
while enabling other signals to flow through. It could
be a better notch filter, so some frequencies around
60 Hz will also be filtered, but since α and β waves
are the focus of this instrument, filtering out signals
above 30 Hz will not affect the result.

The following two stages are a 7 Hz
high-pass filter and a 31 Hz low-pass filter. These
filters remove extraneous brain wave frequencies not
being analyzed in this project. Because α and β waves
are the only waves involved, only a frequency range
of roughly 7-31 Hz is required. Other frequencies
could disrupt the pertinent signal.

Stage 5 consists of a 1 Hz low-pass filter, a
160 Hz high-pass filter, and a variable gain
operational amplifier system. The two filters remove
additional unwanted noise. This component is
optional but beneficial. The low-pass filter is the
capacitor-resistor combination in front, and the
high-pass filter is the parallel capacitor-resistor
combination inside the operational amplifier's
feedback loop. The other portion is the operational
amplifier, which handles the remaining gain that
stage 1 could not. The potentiometer in the system
exists so that the user can control exactly how much
gain they want. The gain formula for this system is
1+R12/(R13+R14), where R14 is the potentiometer. In
this case, it is a 1kΩ potentiometer, so the resistance
ranges from 0 - 1000Ω. For example, with a
resistance of 0 Ω, the gain is 455 V/V, but when the
resistance is 1000Ω, the gain is 83 V/V. This variable
gain is essential because it gives the user control over
how they want to amplify the signal; this can make
post-processing and analysis easier as the output is
flexible to the user’s demands.

Stage 6 is another 60 Hz notch filter that
functions the same as the filter in stage 2. The notch
filter is in place so that any new 60 Hz noise not
initially filtered out is filtered back out.

In the final stage of the bioinstrument, the
output signal of the filter is ready to be sent to a
computer to be processed more and analyzed to help
make diagnoses. The overall gain ranges from 7403.6
- 40586 V/V depending on the potentiometer value.
This circuit has many components, so it is also highly
adjustable to fit a user's requirements. Any of the
filter cutoffs can be changed to isolate different
frequency ranges. For example, if one wanted to
study θ waves, which have a frequency range of 4 - 8
Hz, the filters can be changed to fit this range. In
addition, the potentiometer adds a high degree of
variance, and it can also be changed to the user’s
preference. The overall goal of the instrument is to
take in raw EEG signals from electrodes and output a
non-noisy amplified signal that can be used to help
make diagnoses in patients. It does this using a
combination of passive and active filters and
amplifiers.

III. RESULTS

Taking a discrete Fourier transform of the
raw data, we can create power spectra and analyze it.
In AD patients, EEG signals slow down as there is an
increase of power in low frequencies (typically δ and
θ waves) and a decrease in power in high frequencies
(typically α and β waves). The picture above shows a
shift in the band frequency to that of slower
frequencies. Looking at the amplitude envelopes, we
see less synchronization in AD patients. Lesser
synchronization is where the amplitude is fractured
into a few smaller peaks rather than seeing a single
peak, as in healthy patients. In addition, the reduction



in complexity as an entropy measure is also visible.
Essentially the flux of information seen in the EEG
signal is reduced in AD patients.

Looking at Non-linear Dynamical Analysis
(NDA) of EEG data has shown decreased complexity
of EEG patterns and reduced functional connections
in patients with AD. This concept benefits research as
it can help better understand AD in patients and the
signs to look for in early diagnostics. AD patients
tend to have patterns that are less complex when
compared to healthy patients. This consequence may
occur due to problems arising from coupled neurons.
These actions result in neural activity and dynamics
becoming simpler than healthy people’s neural
activities. One of the assumptions made with NDA is
that EEG signals are “generated by non-linear
deterministic processes with non-linear coupling
interactions between neuronal populations.” (Hornero
2009). This signal implies that neurons will act in a
way controlled by threshold and saturation levels.
Many large networks of interconnected neurons
exhibit local nonlinear interactions in the brain. The
result is that the interconnected neurons will slowly
build up an energy value until a threshold value is
met, followed by bursts of energy redistribution. As a
result, AD patients have lower correlation
dimensional values than control subjects.

Furthermore, “lower [correlation
dimensions] have been found in patients with
increased severity of dementia and suggest that a
reduced [correlation dimensions] may be associated
with an increase in the proportion of lower frequency
components in the AD patients’ EEGs.” (Hornero
2009). As a result, we expect to see simpler
patterns/dynamics leading to slowing, where we see
more frequent low-pass signals.

IV. DISCUSSION

Various electrode types have been used in
recording EEG signals. These include disposable gel,
reusable discs, headband/electrode caps, and
saline-based and needle electrodes. Gel electrodes are
the best option if the goal is to diagnose someone
with AD and their stage most accurately. The
advantages of gel electrodes include the availability
of high-density recording, a measure of how many
electrodes are being used. The more electrodes, the
higher the resolution and the more accurately they

can predict the stage of the AD patient. Other
advantages include having high signal quality and
being much less susceptible to movement artifacts
and interference than water and dry electrodes. Stable
measurements require an extended amount of EEG
data, making gel electrodes reliable. They are
compatible with ring electrodes as alternative
measurement solutions and integrable with other
research equipment such as NFIRS and TMS.
Disadvantages with gel electrodes include discomfort
when slightly scratching the skin to gain impedance.
An EEG procedure takes a long time to set up and
clean, and the patient also must be clean and not have
greasy hair. The gel can dry out after about 5 hours.
However, this does not concern us since the typical
EEG measurement can be done in 20-40 minutes,
thus making gel electrodes the preferable electrode
type for this project.

As far as limitations go, it is currently hard
to access EEG data of AD patients since databases
are private, like ECG or other biomedical data. Due
to this, it is also “hard to systematically benchmark
and assess the existing methods for diagnosing AD
from EEG signals” (Dauwels). Unfortunately, EEG
does not incorporate biophysical knowledge in its
measurements of AD. In summary, the numbers do
not explain what is physiologically happening in the
brain. Nevertheless, EEG data analysis can be used to
predict better and diagnose AD. However,
conclusions should be made by combining EEG
signals with imaging modalities such as MRI,
SPECT, and TMS.

Furthermore, “The correlation between AD
risk factors (e.g., the high plasma concentration of
homocysteine) and EEG characteristics need to be
investigated in greater detail” (Dauwels). The
relationship between memory loss and EEG
abnormalities is also not well studied. For this reason,
the next step is to determine how EEG signals
correlate to the progression of AD and dementia. On
the plus side, EEG has many degrees of freedom and
can be measured while the patient is at rest,
performing memory tasks, or being stimulated with
auditory, tactile, and visual stimulation.
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