Wearable Respiratory
and Blood Oxygen
Monitoring System

Catharine Tian

Eric Ho
for optimization of blood Kelsie Yamano
oxygen Levels Shayan Alipourjeddi

Sunny Li

6-12%

..of the population experience Chronic breathing pattern disorders, spproximately.

e C(Critical role in ICU for adjusting ventilator settings and ensuring optimal oxygenation
e Fitness & Training

Goals

e \Wearable respiratory monitor
o Breathing rate tracking
o Breathing depth tracking
e Pulse oximeter
o Blood oxygen level tracking
o Monitor oxygen level when it drops below a personalized
threshold
e Send all tracking data to phone/computer

Overview

Breathing Monitor
Circuit

Computer
(MATLAB - data

analysis)

Microcontroller

Pulse Oximeter
Circuit

Optical
Biosensor

Oxygen Tank

(application)

Assumptions

e Validity of Breath Monitor
o device only measure inhalation and exhalation motion of the lung
o device movement while running or walking would not trigger a
breath
e |deal Waveform
o no significant noise interference in signal analysis

Breathing Monitor %
9

Differential

Op-Amp Comparator

Hysteretic . p— Low-Pass .
Y 555’ Timer Microcontroller

Strain Gauge High-Pass Filter Comparator Filter

Microcontroller

Strain Gauge °—>§

Strain Gauge w/ Voltage Divider

VCC

R,om = 100 kQ

+

2
\V%

Buffer V(1)
_ —O

Rpom(1 + G€) = 100 kQ(1 + 2¢)

Purpose: detect the change in

lung volume when the person

breathes and creates a signal

Voltage follower is added to

prevent loading

o Buffer can strengthen the

signal if the change in strain
is small and produces a
weak signal

G = 2: typical for metallic strain

gauges
Vcc = 5V: typical portable battery
1+ Ge v

2+ Ge °¢

Ve(t) =

Breathing Monitor
- Breathing Rate)

-

High Pass Filter

Cyp =100 uF
= i Vup(t)

| |
O—| O

Ve(D)

RHP = 15 kﬂ

e Purpose: conditioning the signal that is
generated from the strain gauge

e Typical breath rate: 12-20 breaths per
minute

e Estimate min breath rate: fc = 6 breaths

per minute — 0.1 Hz

1 1
tHp = RHP T CHP =T e T 201

~ 1.59s

Hysteretic Comparator

e Purpose: convert the wave coming out of
Vs the high pass filter and into a square wave

Vyp(t) signifying either an inhalation (down) or
o— — Vin(® exhalation (up)
o)

e V+and V- are close to Vref so a really small
change in breath can be detected by the
R; =100 kQ comparator
o Dynamic range
e Potentiometer R1: ranging in 1kQ - 100kQ

, RVt + R,V
Ri:1kQ—100 kQ V* =5V for Vyp(t) < 1 2'ref
v IN RiV™ + RyVyer

ref:2'5V V- =-5V V, t) >
for Vyp(t) R, +R,

Monostable '555' Timer

+5V

Purpose: turns the square wave
RESET Ve from the comparator into an
equidistant square wave that
represents the breathing rate

R =15kQ

AW

I_ DIS Vour(t)
Vin(t) THR OUT +—o
O——— TRIG

a. T =In(3)RC =1.1-15k-60u = 1s
C=60pF — — GND CTR

—— 10uF

Low-Pass Filter

e Purpose: turns the signal from the
monostable ‘555’ timer into a DC

R;p =10MQ signal, which becomes the input to
Vour(t) O /\ A A O the microcontroller
aur e Resistor & capacitor values were
—1_ Vip(® chosen based on desired cutoff
Crp =10pF —— frequency
o Want a cutoff frequency that
N7 is close to zero in order for

output to be a DC wave

1 1

=By B = — = —— ~ 100
tp = et be = T e T 27+ 0.0016 S

Analog to Digital

e Device converts DC voltage value to breathing rate using the following table:

Voltage Breaths Per Minute Voltage Breaths Per Minute Voltage Breaths Per Minute Voltage Breaths Per Minute

0.500-0.582 | 6 1.667 — 1.749 20 2.833-2.916 34 4.000 — 4.082 48
0.583-0.666 | 7 1.750 — 1.832 21 2.917 — 2.999 35 4.083 - 4.166 49
0.667 — 0.749 8 1.833-1.915 22 3.000 — 3.082 36 4.167 — 4.249 50
0.750-0.832 | 9 1.916 — 1.999 23 3.083 - 3.166 37 4.250 - 4.332 51
0.833-0.915 10 2.000 — 2.082 24 3167-3249 38 4333-4.416 52
0.916-0.999 | 11 2.083-2.166 | 25 3.250—3.332 39 4.417 — 4.499 53

 1.000-1.082 | 12 | 2167-2249 26 3.333-3.416 40 4.500 — 4.582 54
1.083-1.166 | 13 2.250-2.332 27 | 3.417-3499 41 4.583 — 4.666 55
1.167-1.249 14 2.333-2.415 28 . 3.500-3.582 42 4.667 —4.749 56
1.250-1332 | 15 2.416-2.499 29 3.583 - 3.666 43 4.750 — 4.832 57
1.333-1.415 16 2.500-2.582 30 3.667-3.749 44 4.833-4.916 58
1.416-1.499 17 2.583 — 2.666 31 3.750-3.832 45 . 4.917-4.999 59
1.500-1.582 18 2.667 - 2.749 32 3.833 3916 ol 5.000 — 5.082 60
1.583 — 1.666 19 2.750 — 2.832 33 3.917-3.999 47

Breathing Monitor
- Breathing Depth

Differential Amplifier

R = 15kQ e Purpose: calculates the derivative of the
/\ A /\ signal, which allows us to know the
C = 100uF maximum and minimum values of the
ve) O | signal from the zeros of derivative
I —O e Built-in differentiator high-pass filter
Vdifferentiator(t) Component
\ avg(t)

Vdifferentiator(t) = —jwRC - V;(t) = —RC - n

Non-hysteretic comparator

vt =5V e Purpose: takes the output of the
Vaifferentiator () \ differential amplifier and turns it
O— —I- into a square wave, indicating peak
>_C> voltage times from the strain gauge
7 VNH-comparator(t) for the microcontroller
e Rising/falling edge: time at
N V- =-—5¥ inhalation/exhalation time

V¥ =5V for Vdifferentiator(t) >0

VNH—comparatOT (t) = {V— = -5V fOT' Vdifferentiator (t) <0

N\

Ve(®) A

Vdi fferentiator (t)
VN H-comparator (t) P

Breathing Depth Waveform Analysis
/0
N

Algorithm of Microcontroller from Breathing
Monitor to Computer

1.

2.

Write ON, start of breath recording operation enabled:
3. Set time sampling rate to at every 0.001 seconds
Initialize variables
a. last_voltage = O; last_voltage_sample = O
b. Create an empty matrix for peak_times [] and peak_voltages [] and store in MATLAB
C. Do an initial min and max breathing depth trial to determine lung volume associated with voltage values
The edge going down on the square wave in the waveform shows the time that the microcontroller
needs to go back to the smoothed input curves available from the low pass filter and take a voltage
sample.
For each samples:
3. If last_voltage is positive and current_voltage is negative
i. Record time corresponding to current_slope in peak_times []
ii. Record the voltage measurement at this time in peak_voltages []
b. If last_voltage is negative and current_voltage is positive
i. Record time corresponding to current_slope in valley_times []
ii. Record the voltage measurement at this time in valley_voltages []
C. Set last_voltage = current_voltage
Subtract the absolute value of the first component in the valley_voltage [] with the absolute value
first component in the peak_voltage [] and store in magnitude_of_breath_voltage []
Based on initializations determine the magnitude_of_breath [] in liters (tidal volume) from
magnitude_of_breath_voltage []
Overlay magnitude_of_breath [] values as a square wave with pulse oximeter curve for analysis

Arduino code from Breathing Monitor to Matlab

VW WNOUV A WN R

// Libraries
#include <Arduino.h>

// Constants

const int ANALOG_PIN = A@;

const float SAMPLING_RATE = ©.001; // Sampling rate in seconds (0.001 seconds = 1kHz)
const int THRESHOLD = 512; // Threshold for detecting peaks and valleys

const int MATRIX_SIZE = 100; // Size of the arrays for peak and valley times and voltages

// Variables

float last_voltage = 0;

float peak_times[MATRIX_SIZE];

float peak_voltages[MATRIX_SIZE];

float valley_times[MATRIX_SIZE];

float valley_voltages[MATRIX_SIZE];

float magnitude_of_breath_voltage[MATRIX_SIZE];
float magnitude_of_breath[MATRIX_SIZE];

// Function to initialize variables and arrays
void initialize() {
last_voltage = 0;
memset (peak_times, @, sizeof(peak_times));
memset (peak_voltages, @, sizeof(peak_voltages));
memset(valley_times, @, sizeof(valley_times));
memset(valley_voltages, @, sizeof(valley_voltages));
memset (magnitude_of_breath_voltage, @, sizeof(magnitude_of_breath_voltage));
memset (magnitude_of_breath, 0, sizeof(magnitude_of_breath));

}

void setup() {
// Start serial communication
Serial.begin(9600);
initialize();

void loop() i

// Set time sampling rate
delayMicroseconds (SAMPLING_RATE * 1000000); // Delay in microseconds

// Read analog input
int current_voltage = analogRead(ANALOG_PIN);

// Detect peaks and valleys
if (last_voltage > THRESHOLD && current_voltage < -THRESHOLD) {
// Record peak
peak_times[@] = millis(); // Record time
peak_voltages[@] = last_voltage; // Record voltage
else if (last_voltage < -THRESHOLD && current_voltage > THRESHOLD) {
// Record valley
valley_times[@] = millis(); // Record time
valley_voltages[@] = current_voltage; // Record voltage

// Calculate magnitude of breath

magnitude_of_breath_voltage[@] = abs(valley_voltages[@]) - abs(peak_voltages[@]);
// Determine magnitude_of_breath from magnitude_of_breath_voltage

// ... Implement this calculation based on your specific requirements

// Overlay magnitude_of_breath values for analysis

// ... Implement this overlaying process as needed

// Update last_voltage
last_voltage = current_voltage;

Pulse Oximeter

Functions

e Measure arterial blood oxygen saturation
e Hemoglobin absorbance difference [5]

[Beer-Lambert’'s Law]

Advantages
e Non-invasive
e Accurate
e Real-time monitor
e Portable

(RED) (INFRARED)
680nm $40nm
0
HBO2

)
-
1

EXTINCTION (10X)

\
Hb
- 1 | 1 | s 1 [1

2
€aQ0 700 800 900 1000
WAVELENGTH (nm)

Fig 1. Oxyhemoglobin (HbO;) and reduced hemoglobin (Hb) ex-
hibit markedly different absorption (extinction} characteristics rela-
tive to red light at 660 nm and infrared light at 940 nm. (Cour-

tesy of Ohmeda)

Pulse Oximeter

Components
e Red LED light (650nm) [2] ° Hi_gh Pass
e Infrared LED light (910nm) [2] e Microcontroller

e Photodetector

iﬁ?ﬁ ¢z§>

A2D

Microcontroller
) _>
éj‘

Pulse Oximeter

Lowering noise, improving SNR

High-pass Filter

Purpose
e Remove noise from:
o Respiration (0.2 ~ 0.4 Hz)
o Motion artifacts (>0.1Hz)
o Ambient light
e Passes unattenuated AC signal

Parameters
e Cut-off frequency: fc = 0.5 Hz [2]

fe = SrRC

Variable absorption due to pulse-
added volume of arterial blood

:,'.:'.. ek ggbg. [Absorption due to arterial blood
e ': Absorption due to venous blood

Absorption due to tissue

}st——— ABSORPTION -]
\\:.
SO

Fig 3. Tissue composite shows dynamic and static components af-
Secting light absorption. (Courtesy of Ohmeda)

= 0.5Hz R =40kQ, C=8uF, f.= 0.497Hz

Pulse Oximeter

Scaling Computation
e Infrared light signal normalized by e S302 = R/IR (of AC signal)

red light signal 100 -
IR(DC) = R (DC) oy
IR(AC) = IR(AC)/R(AC) [5] 80

5002

30 -

20

]

0. 400

0.600
0.800 -
1.000 -
1.200
1.400
1.600 -
1.800 —
2.000

2.200 A
2. 400
2.600 A
2.800 +
3.000 -
3.200
3. 400 ~

R
IR

RAW’ SIGNAL LEVELS 'SCALED" SIGNAL LEVELS

{WITH DC LEVELS UNEQUAL) (WITH DC LEVELS EQUAL) Fig 5. Relationship of red (R)/infrared (IR) numeric ratio value to

arterial oxygen saturation (SaO,).

Algorithm of Microcontroller from Pulse
Oximeter to Computer

1. Initialize

a. Set up pulse oximeter sensor with red LED, infrared LED, and photodetector
b. Set up microcontroller with necessary input and output pins
c. sampling_rate = 0.001 seconds

2. Begin loop: start reading raw data from photodetector
3. Data processing
3. Process raw data to calculate oxygen saturation (%)

b. Store calculated oxygen saturation value associated with each time in a two matrices
in MATLAB (oxygen_saturation []; time [])

4. Plot data on same graph as breath monitor data with a secondary “y” axis and

time continuing the same as the “x” axis
3. Oxygen saturation vs time
b. Breath depth (liters) vs time

5. Display update: update display with newly plotted graph
6. Repeat and continue reading data

Arduino Code from Pulse Oximeter to Computer

// Data processing
float oxygenSaturation = processRawData(IRValue);

#include <Wire.h>
#include <Adafruit_Sensor.h>
#include <Adafruit_MAX30105.h>

#include <SoftwareSerial.h> // Store data in MATLAB matrices

sendDataToMATLAB(oxygenSaturation, currentMillis);
Adafruit_MAX30105 particleSensor;

SoftwareSerial mySerial(2, 3); // RX, TX // Display update
updateDisplay(oxygenSaturation, currentMillis);

VWONO VA WN R

unsigned long samplingInterval = 1000; // Sampling interval in milliseconds (1 second)
unsigned long previousMillis = @;

o
(=

float processRawData(uint32_t IRvalue) {

void setup() {
// Implement your data processing algorithm here to calculate oxygen saturation

Serial.begin(9600);

mySerial.begin(9600);

// Initialize sensor

if (!particleSensor.begin(Wire, I2C_SPEED_FAST)) {
Serial.println("MAX30105 was not found. Please check wiring/power.");
while (1);

}

particleSensor.setup();

particleSensor.setPulseAmplitudeRed(0x@A);

particleSensor.setPulseAmplitudeGreen(@); // Disable green LED

// Initialize MATLAB communication
mySerial.println("Initializing MATLAB.

void loop() {
unsigned long currentMillis = millis();

// Check if it's time to sample
if (currentMillis - previousMillis >= samplingInterval) {
previousMillis = currentMillis;

// Read raw data from photodetector
uint32_t IRvalue = particleSensor.getIR();

// For example:
// float oxygenSaturation = calculateOxygenSaturation(IRValue);
// return oxygenSaturation;

void sendDataToMATLAB(float oxygenSaturation, unsigned long time) {
// Send data to MATLAB through serial communication
mySerial.print("oxygen_saturation[");
mySerial.print(time);
mySerial.print("] = ");
mySerial.print(oxygenSaturation);
mySerial.println(”;");

mySerial.print("time[");
mySerial.print(time);
mySerial.print("]
mySerial.print(time);
mySerial.println(";");

updateDisplay(float oxygenSaturation, unsigned long time) ‘-’f

Implement code to update the display with newly plotted gréph

For example:

Plot data on the same graph as breath monitor data with a secondary “y” axis
/ using appropriate libraries and methods

Algorithm from Microcontroller to Oxygen Tank

If the pulse oximeter data goes below the threshold, the microcontroller will
send a signal to the oxygen tank telling it to turn on the motor that turns on
the oxygen tank and allows the oxygen levels to return to normal.
Initialize

a. Setlower_threshold_value = 95% (pulse oximeter returns a value for % of oxygen

in blood; every person’s threshold may be different for recovery application)
b. Set upper_threshold_value = 99% (for athletics application)
c. Set motor_status = OFF

Begin loop: read oxygen saturation sample from pulse oximeter every 0.001
seconds
Check Oxygen Saturation
a. If oxygen_saturation < threshold_value
i. If motor_status == OFF

1. Set motor_status == ON . _
b. Else if oxygen_saturatio= threshold_value el T Motor
i. If motor_status == ON |
ii. Set motor_status = OFF O s
Repeat for every sample to control oxygen levels 1

Arduino Code from Microcontroller to Oxygen Tank

#include <Wire.h>
#include <Adafruit_Sensor.h>
#include <Adafruit_MAX30105.h>

#define LOWER_THRESHOLD 95 uint32_t readOxygenSaturation() {
#define UPPER_THRESHOLD 99 // Read oxygen saturation sample from pulse oximeter

#define MOTOR_PIN 10 return particleSensor.getIR();

VWO NOU A WN R

Adafruit_MAX30105 particleSensor;
void checkOxygenSaturation(uint32_t oxygenSaturation) {
// Check if oxygen saturation is below the lower threshold
if (oxygenSaturation < LOWER_THRESHOLD) {
// Initialize sensor // If motor is currently off, turn it on
if (!particleSensor.begin(Wire, I2C_SPEED_FAST)) { if (!digitalRead(MOTOR_PIN)) {
i:ﬁzli;’;intln("mxmlas was not found. Please check wiring/power."); digitalWr‘ite(MOTOR_PIN, HIGH);
}
particleSensor.setup(); }
particleSensor.setPulseAmplitudeRed(0x@A); }
particleSensor.setPulseAmplitudeGreen(@); // Disable green LED // Check if oxygen saturation is above or equal to the upper threshold
else if (oxygenSaturation >= UPPER_THRESHOLD) {
// If motor is currently on, turn it off

void setup() {
Serial.begin(96090);

Serial.println("Motor turned ON");

// Initialize motor pin
pinMode (MOTOR_PIN, OUTPUT);
digitalWrite(MOTOR_PIN, LOW); // Initially turn off the motor if (digitalRead(MOTOR_PIN)) {
i digitalWrite(MOTOR_PIN, LOW);
Serial.println("Motor turned OFF");
void loop() {
// Read oxygen saturation sample from pulse oximeter every 0.001 seconds
uint32_t oxygenSaturation = readOxygenSaturation();

// Check oxygen saturation
checkOxygenSaturation(oxygenSaturation);

delay(1); // Delay to achieve approximately 1 ms sampling rate

}

Application Overview

Blood oxygen levels become
too low

Various factors such as fatigue
and poor circulation cause blood
oxygen levels to drop.

01

02

03

Pulse oximeter detects
change

The pulse oximeter takes in data
with every breath and is combined
with a circuit that sets off a trigger
when below a healthy blood
oxygen threshold of 95%.

Oxygen tubes increase
oxygen output in liters per
minute

Once this trigger is activated,
oxygen tubes are activated to
increase oxygen dispensal until
the pulse oximeter reading returns
to above the threshold.

Advantages/Applications

Athletic Performance in Elite Running

e Altitude training simulation to reduce oxygen intake per breath
o Physiological effect: increases quantity of red blood cells over time which
increases transport of oxygen to muscle cells (more cellular respiration) [4]
e Circuit provides a signal to an oxygen mask that controls the level of oxygen
available while running on a treadmill
o Negative feedback loop: blood oxygen levels above set level — mask reduces
the amount of oxygen via microcontroller

Hospital Stay Surgery Recovery

e After surgery, patients walk around the hospital to promote blood flow and recovery
e Device can be connected to oxygen tubes controlled via a microcontroller to ensure
blood oxygen levels remain above threshold. [3]

e Allows recovery while keeping patient safe

Limitations

e Movement while running could trigger a false breath and affect
the breathing rate
e More efficient noise elimination methods

References

[1] https://pubs.aip.ora/aip/rsi/article/83/10/104708/359654/0Optimal-filter-bandwidth-for-pulse-oximetry

[2] https://www.ee.columbia.edu/~kinget/EE6350_S14/PPG6350 Web/files/Datasheet%20PPG.pdf

[3] https://iopscience.iop.orq/article/10.1088/1742-6596/2318/1/012022/pdf

[4] https://utswmed.org/medblog/high-altitude-trainin

[5] https://link.springer.com/article/10.1007/BF01617328

https://pubs.aip.org/aip/rsi/article/83/10/104708/359654/Optimal-filter-bandwidth-for-pulse-oximetry
https://www.ee.columbia.edu/~kinget/EE6350_S14/PPG6350_Web/files/Datasheet%20PPG.pdf
https://iopscience.iop.org/article/10.1088/1742-6596/2318/1/012022/pdf
https://utswmed.org/medblog/high-altitude-training/
https://link.springer.com/article/10.1007/BF01617328

Thank you to Professor ‘; - B
Cauwenberghs, e S
Samira, Vikrant, and v) w"é
Adyant for all the help! S N

