BENG 186B Winter 2021

Quiz 2

Friday, February 12, 2021

Last Name, First Name: ________________________________

• This quiz is on-line, open-book, and open-notes. You may use a calculator or an equivalent program, but web search is prohibited. You may follow electronic links from Canvas or the class web pages, but not any further. No collaboration or communication in any form is allowed, except for questions to the instructor and TAs.

• The quiz is due February 12, 2021 at 11:59pm, over Canvas. It should approximately take 2 hours to complete, but there is no time limit other than the submission deadline. Do not discuss any class-related topics among yourselves before or after you have completed your quiz, and until the submission deadline has passed.

• There are 4 problems. Points for each problem are given in [brackets]. There are 100 points total.
1. **[25 pts]** Consider the current-in, voltage-out active filter circuit below:

(a) **[15 pts]** Assume the operational amplifier is ideal and unsaturated. Derive the transfer function \(H(j\omega) = \frac{V_{out}(j\omega)}{I_{in}(j\omega)} \). What type of filter is this? What is the cutoff frequency?
(b) [5 pts] What is the input impedance at the I_{in} node?

(c) [5 pts] What is the output impedance at the V_{out} node?
2. **[35 pts]** Consider the signal generator circuit shown below. All active components are ideal. The 555 timer IC and the inverter logic gate operate from a +3V single supply, while the opamp operates from a +15V/-15V dual supply. The values for the passive components are $R_1 = 1.143 \, \text{M}\Omega$, $R_2 = 143 \, \text{k}\Omega$, $R_3 = 50 \, \text{k}\Omega$, $R_4 = 150 \, \text{k}\Omega$, and $C = 100 \, \text{nF}$. You may also find the following equations useful for the 555 timer ($\ln(3) \approx 1.1$ and $\ln(2) \approx 0.7$):

\[
T = \ln(3) \times RC \quad T_{lo} = \ln(2) \times R_2C \quad T_{hi} = \ln(2) \times (R_1 + R_2)C
\]

(a) **[15 pts]** Sketch the waveforms for the voltages V_A, V_B and V_{out} on the diagrams on the next page. You may assume that at time $t = 0$ the voltage on the capacitor C is 1 V.
(b) [15 pts] What purpose does the inverter serve? Can you come up with a variation on this circuit, without the inverter or any other logic gates, that generates the same voltage waveform for V_{out}?
(c) [5 pts] How does the output voltage V_{out} change if the -15V lower supply of the opamp is replaced with ground (0V), and its +15V upper supply is replaced with +9V?
3. **[20 pts]** Circle the **best answer (only one answer per question)**:

(a) [4 pts] The output V_{out} of the circuit at right (with an ideal opamp) goes high when the input V_{in} goes:

i. below 0
ii. above 0
iii. below +2.5V
iv. above +2.5V
v. above +5V

(b) [4 pts] The virtual ground in an active circuit is established:

i. by shorting the input pins of the opamp
ii. by saturating the output of the opamp
iii. by grounding the opamp inverting input
iv. through high-gain negative feedback
v. through high-gain positive feedback

(c) [4 pts] At very high frequencies the electrode shown on the right has:

i. infinite impedance
ii. low impedance
iii. zero impedance
iv. zero voltage
v. voltage near the half-cell potential
(d) [1 pt ea.] Indicate for each statement below whether it is true or false:

i. **TRUE / FALSE**: Nernst potentials result from the thermal equilibrium between diffusion and drift of a single type of ions permeating through the membrane.

ii. **TRUE / FALSE**: ECoG can be measured directly using electrodes placed on the scalp.

iii. **TRUE / FALSE**: ENG activity is larger in amplitude than EMG activity.

iv. **TRUE / FALSE**: EOG measures the response of the retina in the eye to a flash of light.

v. **TRUE / FALSE**: The biopotential generated by a current dipole is zero anywhere in the plane orthogonal to the dipole through its center.

vi. **TRUE / FALSE**: The Q wave of ECG indicates atrial depolarization.

vii. **TRUE / FALSE**: The battery voltage of an electrochemical cell is given by the difference between the electrode half-cell potentials.

viii. **TRUE / FALSE**: A non-contact electrode is non-polarizable.
4. **[20 pts]** Consider an intracellular measurement of the action potential of a myocyte (muscle) cell with two identical electrodes: one signal electrode inserted inside the cell, and one reference electrode outside in the extracellular medium, far away from the cell. The ion concentrations inside and outside the cell are given in the table below. At rest (equilibrium) the cell membrane is equally permeable to all three ion types, whereas at the peak of the action potential the cell membrane is permeable to Na\(^+\) only. The GHK equation is:

\[
V_m = \frac{RT}{F} \ln(10) \log_{10}\left(\frac{P_{Na}[Na^+]_o + P_{K}[K^+]_o + P_{Cl}[Cl^-]_i}{P_{Na}[Na^+]_i + P_{K}[K^+]_i + P_{Cl}[Cl^-]_o}\right)
\]

and at room temperature \(RT/F \ln(10) \approx 60 \text{ mV}\).

<table>
<thead>
<tr>
<th></th>
<th>Inside</th>
<th>Outside</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na(^+)</td>
<td>10nM</td>
<td>100nM</td>
</tr>
<tr>
<td>K(^+)</td>
<td>100nM</td>
<td>10nM</td>
</tr>
<tr>
<td>Cl(^-)</td>
<td>10nM</td>
<td>100nM</td>
</tr>
</tbody>
</table>

(a) **[10 pts]** Find the voltage measured by the signal electrode relative to the reference electrode when the cell is at rest.
(b) [5 pts] Find the voltage measured by the signal electrode relative to the reference electrode when the cell is at the peak of its action potential.

(c) [5 pts] Why is it essential that the two electrodes are made of the same material? What happens to the measurement otherwise? Explain.
(d) **Bonus** [+10 pts] How do the voltages in (a) and (b) change in the case of extracellular measurements where the signal electrode is now positioned outside of the cell, 1 mm away from the cell. You may assume that the Na\(^+\) conductance of the cell membrane is \(g_{Na} = 1 \mu A/V\), and the extracellular conductivity is \(\sigma = 0.1 A/Vm\).