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BENG 207 Neuromorphic Integrated Bioelectronics

Date

9/27, 9/29

10/4, 10/6

10/11, 10/13

10/18, 10/20

10/28, 111

11/1,11/3

11/8, 11/10

11/15, 11/17

11/22, 11/24

11/29, 1211

Topic

Biophysical foundations of natural intelligence in neural systems. Subthreshold MOS silicon models of membrane excitability. Silicon
neurons. Hodgkin-Huxley and integrate-and-fire models of spiking neuronal dynamics. Action potentials as address events.

Silicon retina. Low-noise, high-dynamic range photoreceptors. Focal-plane array signal processing. Spatial and temporal contrast
sensitivity and adaptation. Dynamic vision sensors.

Silicon cochlea. Low-noise acoustic sensing and automatic gain control. Continuous wavelet filter banks. Interaural time difference and
level difference auditory localization. Blind source separation and independent component analysis.

Silicon cortex. Neural and synaptic compute-in-memory arrays. Address-event decoders and arbiters, and integrate-and-fire array
transceivers. Hierarchical address-event routing for locally dense, globally sparse long-range connectivity across vast spatial scales.

Review. Modular and scalable design for neuromorphic and bioelectronic integrated circuits and systems. Design for full testability and
controllability.

Midterm due 11/2. Low-noise, low-power design. Fundamental limits of noise-energy efficiency, and metrics of performance. Biopotential
and electrochemical recording and stimulation, lab-on-a-chip electrophysiology, and neural interface systems-on-chip.

Learning and adaptation to compensate for external and internal variability over extended time scales. Background blind calibration of
device mismatch. Correlated double sampling and chopping for offset drift and low-frequency noise cancellation.

Energy conservation. Resonant inductive power delivery and data telemetry. Ultra-high efficiency neuromorphic computing. Resonant
adiabatic energy-recovery charge-conserving synapse arrays.

Guest lectures

Project final presentations. All are welcome!
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Deep Brain Stimulation (DBS)
for Parkinson’s Disease Remediation

- Intrusive intervention
* “Brain’s pacemaker”
» Electrode is implanted in the deep
brain’s thalamus

* Periodic (130-185Hz) activation of
electrical impulses delivered by the
electrode to suppress Parkinson-
induced tremor

- Highly invasive procedure

» Surgical insertion of electrode and
Stimulation electronics

« Battery needs to be replaced
- Open-loop

« Adaptation (e.g. Medtronic Activa
PC+S) /[m[ted to user—mediated Surgery to insert electrode deep in the brain. Parkinson’s

patient remains awake during surgery.

control of stimulation amplitude http://en.wikipedia.org/wiki/Deep,_brain_ stimulation
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Distributed Brain Dynamics of Human Motor Control

G. Cauwenberghs, K. Kreutz-Delgado, T.P. Jung, S. Makeig, H. Poizner, T. Sejnowski,
M. Arnold, F. Broccard, Y.M. Chi, J. Iversen, C. Maier, E. Neftci, D. Peterson,
A. Akinin, S. Das, N. Govil, S. Hsu, T. Mullen, A. Ojeda, C. Stevenson
NSF EFRI-1137279: Mind, Machines and Motor Control (M3C)

EEG brain dynamics and Parkinson’ s

o i | METRIC
A | fitness function Q Force feedback

PD markers adaptive

/ control

N\
MIMO
paraimeters 6
J

synaptic

/ plasticity Force
Feedback

@ Nock EMG sources.
@ Eye movement sources.

§ EMG, kinetics, gaze
(@)

thalamocortical/BG
model

Cortex : H
/ : Neuromorphic emulation of brain
: dynamics in motor control

Computational modeling

Gert Cauwenberghs BENG 207 Neuromorphic Integrated Bioelectronics gert@ucsd.edu



Closing the Loop: Interactive Neural/Artificial Intelligence
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Neuromorphic Systems Engineering

F. Broccard, S. Joshi, J. Wang and G Cauwenberghs, “Neuromorphic neural interfaces: from neurophysiological inspiration to
biohybrid coupling with nervous systems,” JNE, 2017
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Minimally Invasive Neurotechnologies

10cm

MEG
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Emerging uECoG Technologies

Flexible Modular

S. Ha, C. Kim, A. Akinin, J. Park, H. Wang, C. Maier, P. Mercier and G. Cauwenberghs, “Silicon Integrated High-Density
Electrocortical Interfaces,” Proceedings of the IEEE, vol.105 (1), pp. 11-33, 2017.
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ENIAC:
Encapsulated Neural Interfacing and Acquisition Chip
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S. Ha, C. Kim, A. Akinin, J. Park, H. Wang, C. Maier, P. Mercier and G. Cauwenberghs, “Silicon Integrated High-Density
Electrocortical Interfaces,” Proceedings of the IEEE, vol.105 (1), pp. 11-33, 2017.




Highly Sensitive, Low-Noise Low-Power Integrated

Biopotential Sensing and Acquisition
Kim, Joshi, Courellis, Wang, Miller, and Cauwenberghs, 2018

— First biopotential integrated ADC to deliver greater than 90dB dynamic
range, lower than 1uVrms input-referred noise, and faster than 1ms
settling to 200mVpp input transients, at less than 1uW power per channel,
with 16 recording channels integrated within 1 sq. mm in 65nm CMOS:
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Kim, Joshi, Courellis, Wang, Miller, and Cauwenberghs, “A 92dB Dynamic Range sub-pV rms-noise 0.8 yW/ch
Neural-Recording ADC Array with Predictive Digital Autoranging,” IEEE ISSCC 2018.
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Electrophysiology Lab-on-a-Chip
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J. Wang, A. Paul, D. Zhang, J. Wu, Y. Xu, Y. Zou, C. Kim, and G. Cauwenberghs, “1024-Electrode Hybrid Voltage/Current-Clamp Neural
Interface System-on-Chip with Dynamic Incremental-SAR Acquisition,” 2020 IEEE Symposium on VLSI Circuits (VLSI-Circuits), Honolulu HI,

June 14-19, 2020.
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Ha et. al., JNE, 13(5), 2016
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Optically-Addressed Nanowire-Based Retinal Prosthesis

Current Clinical Practice: Possible Approach: Proposed: Optically-Addressed
Hermetic can w/ leads to MEA CMOS imager w/ leads to Nanowire Array with Charge-

All Sircuks Inihermetcliouskig: power management Metered Off-Implant Regulation

proven long-term safety Only power circuits in hermetic housing All circuits in hermetic housing

PROBLEM: -

N wires for N pixels
— not scalable

— Scalable: only
Scalable: only a two wires
few wires required

Coil for power/
: p required

telemetry

Electrode_s only: no Cu or Image sensor, ampIifigrs, Optically-addressed
other toxic metals, proven DACs, and electrodes: fill nanowire array: proven

long-term biocompatibility factor and thermal limitations long-term biocompatibility
Thin-film encapsulation
required: unproven Efficient off-implant regulation & charge balancing:

long-term safety, especially reduced thermal concerns
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Akinin et al, “An Optically-Addressed Nanowire-Based Retinal Prosthesis with 73% RF-to-Stimulation Power Efficiency and 20nC-to-3uC
Wireless Charge Telemetering,” IEEE Int. Solid-State Circuits Conf. (ISSCC), 2021.
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Energy-Efficient RF Powered Charge-Balanced Stimulation
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Akinin et al, “An Optically-Addressed Nanowire-Based Retinal Prosthesis with 73% RF-to-Stimulation Power Efficiency and 20nC-to-3uC
Wireless Charge Telemetering,” IEEE Int. Solid-State Circuits Conf. (ISSCC), 2021.
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Distributed Brain Dynamics of Human Motor Control

G. Cauwenberghs, K. Kreutz-Delgado, T.P. Jung, S. Makeig, H. Poizner, T. Sejnowski,
M. Arnold, F. Broccard, Y.M. Chi, J. Iversen, C. Maier, E. Neftci, D. Peterson,
A. Akinin, S. Das, N. Govil, S. Hsu, T. Mullen, A. Ojeda, C. Stevenson
NSF EFRI-1137279: Mind, Machines and Motor Control (M3C)

EEG brain dynamics and Parkinson’ s
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Noise-Energy Efficiency

Digitization
Wireless Telemetry
Energy and noise efficiency metrics




Energy and Noise Efficiency Metrics

* Noise Efficiency Factor (NEF):

- Relative measure of energy cost of a biopotential amplifier,
relative to that of an ideal amplifier with same input referred
noise power

— Thermal noise fundamental limit;: NEF =1
— Practical limit for CMRR > 80 dB: NEF > 2 (2.3 demonstrated)

 Energy per Conversion Level Figure of Merit (FoM):

- Energy cost of an analog-to-digital converter, per conversion, and
divided by the number of quantization levels

— State of the art: FoM = ~ 10 fJ at 10b and 100ksps
 Range Efficiency:
- Energy per bit, per squared meter of wireless transmission

- Depends on target BER and power at the receiver
— State of the art: ~ 10 fJ]/m?
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EEG/ECoG/EMG Amplification, Filtering and Quantization

Mollazadeh, Murari, Cauwenberghs and Thakor (2009)

CopEERaRas = 5 [ T ] | Low noise

« 21nVAHz input-referred noise

* 2.0uVrms over 0.2Hz-8.2kHz
Low power

« 100uW per channel at 3.3V
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» 0.2-94Hz highpass, analog adjustable

» 140Hz-8.2kHz lowpass, analog
adjustable

» 34dB-94dB gain, digitally selectable

High density
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* 3.3mm X 3.3mm in 0.5um 2P3M CMQOS
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Implantable Wireless Telemetry and
Energy Harvesting

 Transcutaneous wires limit the application of implantable
sensing/actuation technology to neural prostheses
- Risk of infection

« Opening through the skin reduces the body’s natural defense against
invading microorganisms

- Limited mobility
» Tethered to power source and data logging instrumentation

 Wireless technology is widely available, however:

- Frequency range of radio transmission is limited by the body’ s
absorption spectra and safety considerations
« Magnetic (inductive) coupling at low frequency, ~1-4 MHz
« Very low transmitted power requires efficient low-power design

Sauer, Stanacevic, Cauwenberghs, and Thakor, 2005
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Sensor Interface Conditioning Telemetry
Sauer, Stanacevic, Cauwenberghs, and Thakor (2005)

~Indugtor Coil

Implantable probe with biopotential electrodes,
VLSI acquisition, microbatteries, and power
harvesting telemetry chip.

Biopotenti
acquisition

released
probe bod

Data
Receiver

Clock

Extraction

Power
Transmitter

Rectification

Regulation ||

— | Modulation

Data
Encoding

Telemetry chip (1.5mm X 1.5mm)

Power delivery and data transmission
over the same inductive link
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Non-Ilnvasive and Minimally
Invasive Biopotential Recording

Electrodes
Amplifiers
Signal Conditioning




Wireless Non-Contact Biopotential Sensors
Chi et al, 2010-
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Chi, Maier, Cauwenberghs, “Ultra-high input impedance, low noise integrated amplifier for noncontact biopotential sensing,” IEEE JETCAS 1(4),
526-535, 2011.

Joshi, Kim and Cauwenberghs, “A 6.5-uyW/MHz Charge Buffer With 7-fF Input Capacitance in 65-nm CMOS for Noncontact Electropotential Sensing,’
IEEE TCAS-II, 63(12), 1161-1165, 2016.

Chi, Wang, Wang, Maier, Jung, and Cauwenberghs, “Dry and Noncontact EEG Sensors for Mobile Brain-Computer Interfaces,” IEEE TNSRE 20(2),
228-235, 2012.
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Capacitive Non-Contact Electrodes

Senses biopotential signals without of March 17,1970 p.c mcwaroson ETAL 3,500,823

ELECTROCARDIOGRAPHIC AND BIOELECTRIC CAPACITIVE ELECTRODE
contact

- Capacitive signal coupling

+ VOLTS

- No electro-gel

- Through clothing and hair ‘ e
Basic idea is well-known - erouno
— First patent in 1968 (Richardson)

- Several groups (Prance) and one company
(Quasar) have pursued this

Technology still problematic
- Noise, interference pickup, artifacts

Circuit complexity, materials, construction, ol
cost

Nothing beyond ‘lab prototype’

D.C
VOLTAGE

[1] C.J. Harland, T.D. Clark, and R.J. Prance. Electric potential probes - new
directions in the remote sensing of the human body. Measurement Science and o
Technology, 2:163-169, February 2002. Philip C. Richardson 8

[2] A. Lopez and P. C. Richardson. Capacitive electrocardiographic and bioelectric Alfredo Lopez,Jr.
electrodes. IEEE Transactions on Biomedical Engineering, 16:299-300, 1969. ar %74

[3] P. Park, P.H. Chou, Y. Bai, R. Matthews, and A. Hibbs. An ultra- wearable, , ATIORESY
wireless, low power ECG monitoring system. Proc. IEEE International Conference /
on Complex Medical Engineering, pages 241-244, Nov 2006.
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Challenges in Non-Contact Sensors

skin

electrode unity gain buffer
Capacitive coupling, Sk.“" no gel active mplifier
flui \

rather than ohmic shield
contact, between
scalp/skin and

electrode
electrode

« Amplifier parasitic input capacitance
- Reduces gain as electrode-skin distance changes
- Severely degrades CMRR
- Increases the effect of amplifier voltage noise
» Integrates current noise at biopotential signal frequencies
- Amplifier input biasing

- Large resistance required for adequate low frequency response adds
further current noise
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Non-Contact Sensor Noise

Generic Capacitive Sensor Noise Model:
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Non-Contact Sensor Design

Non-contact sensor fabricated on a printed circuit board substrate

Circuit 10k

10nF

Sensing Plate

@000 0000000000000 00000

Active Shield

P OO000000C0OC0OCIOIOCIOGIOSIOSNOIOGIONIOGIOINOIOS
]

Amplifier

0000000000000 00000000
L[]

Advantages:
- Robust circuit Standard 4-layer PCB

Inexpensive production
Safe, no sharp edges or fingers, can be made flexible

Very low power (<100uW /sensor)

Strong immunity to external noise Chi and Cauwenberghs, 2010

gert@ucsd.edu
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Wearable Wireless EEG/ECG System

Y. M. Chi, E. Kang, J. Kang, J. Fang and G. Cauwenberghs, 2010

* Prototype non-contact sensor system with 4-channels
- Bluetooth wireless telemetry and microSD data storage

- Rechargeable battery

« Mounted in both head and chest harnesses

EEG Hand-band ECG Chest Harness Electronics
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ECG Comparison

I - - -3M Red Dot Ag/AgCI ’;

_____UCSD Non-contact Sensor !
Through T-shirt

Simultaneously acquired ECG in laboratory setting
No 60Hz Filter

Y. M. Chi, E. Kang, J. Kang, J. Fang and G. Cauwenberghs, 2010
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Sample ECG Data

Derived 12-lead ECG from 4 electrodes mounted in
chest harness

Y. M. Chi, E. Kang, J. Kang, J. Fang and G. Cauwenberghs, 2010
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ECG Under Motion

Sitting Walking

Jumping

e

Y. M. Chi, E. Kang, J. Kang, J. Fang and G. Cauwenberghs, 2010
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Non-Contact EEG Recording over Haired Scalp

Y. M. Chi, E. Kang, J. Kang, J. Fang and G. Cauwenberghs, 2010
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« [Easy access to hair-covered areas of the
head without gels or slap-contact
« EEG data available only from the posterior
- P300 (Brain-computer control, memory
recognition)
- SSVP (Brain-computer control)
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Non-Contact vs. Ag/AgCl Comparison

Y. M. Chi, E. Kang, J. Kang, J. Fang and G. Cauwenberghs, 2010
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Full bandwidth, unfiltered, signal show (.5-100Hz)
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Unobtrusive Dry-EEG Functional Brain Imaging

Mullen, Kothe, Chi, Ojeda, Kerth, Makeig, Jung, and Cauwenberghs, 2015

Dry EEG electrode Wearable form-factor  64-channel dry-electrode wireless streaming EEG
Conductive 2

Elastomeric
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original
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Mullen et al, Real-time Neuroimaging and Cognitive Monitoring Using Wearable Dry EEG. IEEE TMBE, 2015.

gert@ucsd.edu
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Opportunities for In-Ear Health Sensing

* Prevalence of wireless personal audio devices:

- Rapidly aging global population:

- Opver the next few decades, people 65 years and older
will account for 20% of the global population, an
unprecedented shift. New healthcare challenges and
opportunities will arise for which reliable and
continuous high-bandwidth health data will be critical.

* In-Ear Health Sensing Platform
- An in-ear healthcare platform has the convenience,
comfort, and discretion of a consumer audio device,
while offering valuable electrophysiological and bio-
chemical data.
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In-Ear Electrophysiology
Paul et al, IEEE NER 2019; IEEE EMBC 2019

High-density dry-contact electrodes capture a wealth of physiological
information from an integrated in-ear device

Electrodermal Activity
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ASSR PSD Impedance Imaging

In-ear, high-density dry-contact electrode recording platform records
electroencephalography (EEG) signals from the brainstem, temporal, and visual
cortexes with quality comparable to commercial scalp EEG.

— Electrical impedance measurement provides electrodermal activity (EDA).
— Opportunities for closed-loop auditory neurofeedback (tinnitus, insomnia, apnea, etc).

Paul, A., Deiss, S., Tourtelotte, D., Kleffner, M., Zhang, T., and Cauwenberghs, G. Electrode-Skin Impedance Characterization of In-Ear Electrophysiology Accounting for
Cerumen and Electrodermal Response. IEEE EMBS Int. Conf. Neural Engineering (NER’19), 2019.

Paul, A., Akinin, A., Cauwenberghs, G. Integrated In-Ear Device for Auditory Health Assessment. 2019 41st Annual International Conference of the IEEE Engineering in
Medicine & Biology Society (EMBC'19), 2019.
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Date

9/27, 9/29

10/4, 10/6

10/11, 10/13

10/18, 10/20

10/28, 111

11/1,11/3

11/8, 11/10

11/15, 1117

11/22, 11/24

11/29, 1211

Topic

Biophysical foundations of natural intelligence in neural systems. Subthreshold MOS silicon models of membrane excitability. Silicon
neurons. Hodgkin-Huxley and integrate-and-fire models of spiking neuronal dynamics. Action potentials as address events.

Silicon retina. Low-noise, high-dynamic range photoreceptors. Focal-plane array signal processing. Spatial and temporal contrast
sensitivity and adaptation. Dynamic vision sensors.

Silicon cochlea. Low-noise acoustic sensing and automatic gain control. Continuous wavelet filter banks. Interaural time difference and
level difference auditory localization. Blind source separation and independent component analysis.

Silicon cortex. Neural and synaptic compute-in-memory arrays. Address-event decoders and arbiters, and integrate-and-fire array
transceivers. Hierarchical address-event routing for locally dense, globally sparse long-range connectivity across vast spatial scales.

Review. Modular and scalable design for neuromorphic and bioelectronic integrated circuits and systems. Design for full testability and
controllability.

Midterm due 11/2. Low-noise, low-power design. Fundamental limits of noise-energy efficiency, and metrics of performance. Biopotential
and electrochemical recording and stimulation, lab-on-a-chip electrophysiology, and neural interface systems-on-chip.

Learning and adaptation to compensate for external and internal variability over extended time scales. Background blind calibration of
device mismatch. Correlated double sampling and chopping for offset drift and low-frequency noise cancellation.

Energy conservation. Resonant inductive power delivery and data telemetry. Ultra-high efficiency neuromorphic computing. Resonant
adiabatic energy-recovery charge-conserving synapse arrays.

Guest lectures

Project final presentations. All are welcome!
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