BENG 207 Special Topics in Bioengineering

Neuromorphic Integrated Bioelectronics

Week 7: Learning and Adaptation

Gert Cauwenberghs

Department of Bioengineering UC San Diego

http://isn.ucsd.edu/courses/beng207

Gert Cauwenberghs

BENG 207 Neuromorphic Integrated Bioelectronics

gert@ucsd.edu

BENG 207 Neuromorphic Integrated Bioelectronics

Date	Торіс
9/27, 9/29	Biophysical foundations of natural intelligence in neural systems. Subthreshold MOS silicon models of membrane excitability. Silicon neurons. Hodgkin-Huxley and integrate-and-fire models of spiking neuronal dynamics. Action potentials as address events.
10/4, 10/6	Silicon retina. Low-noise, high-dynamic range photoreceptors. Focal-plane array signal processing. Spatial and temporal contrast sensitivity and adaptation. Dynamic vision sensors.
10/11, 10/13	Silicon cochlea. Low-noise acoustic sensing and automatic gain control. Continuous wavelet filter banks. Interaural time difference and level difference auditory localization. Blind source separation and independent component analysis.
10/18, 10/20	Silicon cortex. Neural and synaptic compute-in-memory arrays. Address-event decoders and arbiters, and integrate-and-fire array transceivers. Hierarchical address-event routing for locally dense, globally sparse long-range connectivity across vast spatial scales.
10/28, 11/1	Review. Modular and scalable design for neuromorphic and bioelectronic integrated circuits and systems. Design for full testability and controllability.
11/1, 11/3	Midterm due 11/2. Low-noise, low-power design. Fundamental limits of noise-energy efficiency, and metrics of performance. Biopotential and electrochemical recording and stimulation, lab-on-a-chip electrophysiology, and neural interface systems-on-chip.
11/8, 11/10	Learning and adaptation to compensate for external and internal variability over extended time scales. Background blind calibration of device mismatch. Correlated double sampling and chopping for offset drift and low-frequency noise cancellation.
11/15, 11/17	Energy conservation. Resonant inductive power delivery and data telemetry. Ultra-high efficiency neuromorphic computing. Resonant adiabatic energy-recovery charge-conserving synapse arrays.
11/22, 11/24	Guest lectures
11/29, 12/1	Project final presentations. All are welcome!

Large-Scale Mixed-Signal Sensory Computation

Example: VLSI Analog-to-digital vector quantizer (Cauwenberghs and Pedroni, 1997)

Massive Parallelism

- distributed representation
- local memory and adaptation
- analog sensory interface
- physical computation
- analog accumulation on single wire
- Scalable

silicon area and power scale linearly with throughput

Highly Efficient

factor 100 to 10,000 less energy/operation than DSP

- Limited Precision
 - analog mismatch and nonlineary (WYDINWYG)
 - fix: adaptation in redundancy

Learning on Silicon

Adaptation:

- necessary for robust performance under variable conditions and in unpredictable environments
- also compensates for imprecision in analog computation
- avoids ad-hoc programming, tuning, and manual parameter adjustment

Learning:

- generalization of output to previously unknown, although similar, stimuli
- system identification to extract relevant environmental parameters

Cauwenberghs & Bayoumi, Eds., Learning on Silicon, Kluwer 1999.

Adaptive Elements

Adaptation:

Autozeroing (high-pass filtering)outputsOffset Correctionoutputse.g. Image Non-Uniformity Correctioninputs, outputsEqualization / Deconvolutioninputs, outputse.g. Source Separation; Adaptive Beamforminginputs, outputs

Learning:

Unsupervised Learning e.g. Adaptive Resonance; LVQ; Kohonen Supervised Learning e.g. Least Mean Squares; Backprop Reinforcement Learning inputs, outputs

inputs, outputs, targets

reward/punishment

Incremental Outer-Product Learning in Neural Nets

Multi-Layer Perceptron:

Outer-Product Learning Update:

- Hebbian (Hebb, 1949):
- LMS Rule (Widrow-Hoff, 1960):
- Backpropagation (Werbos, Rumelhart, LeCun):

 $x_i = f(\sum_j p_{ij} x_j)$ $\Delta p_{ij} = \eta \ x_i \cdot e_i$

 $e_{i} = x_{i}$ $e_{i} = f'_{i} \cdot \left(x_{i}^{\text{target}} - x_{i} \right)$

$$e_j = f'_j \sum_i p_{ij} e_i$$

Gert Cauwenberghs

Technology

Incremental Adaptation:

- Continuous-Time:

$$C \frac{\mathrm{d}}{\mathrm{d}t} V_{\mathrm{stored}} = I_{\mathrm{adapt}}$$

- Discrete-Time:

$$C \Delta V_{\text{stored}} = Q_{\text{adapt}}$$

Storage:

- Volatile capacitive storage (incremental refresh)
- Non-volatile storage (floating gate)

Precision:

- Only polarity of the increments is critical (not amplitude).
- Adaptation compensates for inaccuracies in the analog implementation of the system.

Dynamic Memory and Incremental Adaptation

Gert Cauwenberghs

BENG 207 Neuromorphic Integrated Bioelectronics

gert@ucsd.edu

Floating-Gate Non-Volatile Memory and Adaptation

Paul Hasler, Chris Diorio, Brad Minch, Carver Mead, ...

Hot electron injection

- 'Hot' electrons injected from drain onto floating gate of M1.
- Injection current is proportional to drain current and exponential in floating-gate to drain voltage (~5V).

Tunneling

- Electrons tunnel through thin gate oxide from floating gate onto high-voltage (~30V) n-well.
- Tunneling voltage decreases with decreasing gate oxide thickness.

Source degeneration

- Short-channel M2 improves stability of closed-loop adaptation (Vd open-circuit).
- M2 is not required if adaptation is regulated (Vd driven).
- Current scaling
 - In subthreshold, Iout is exponential both in the floating gate charge, and in control voltage Vg.

Phase Change Memory Technology

- Analog switch
 - $100\Omega 1M\Omega$ resistance range
- Fast write and read times (~nsec)
- Radiation hard

G. Atwood, R. Bez, "90nm Phase Change Technology with µTrench and Lance Cell Elements," VLSI Symp, 2007.

Reconfigurable Synaptic Connectivity and Plasticity *From Microchips to Large-Scale Neural Systems*

Spike Timing-Dependent Plasticity

Bi and Poo, 1998

Spike Timing-Dependent Plasticity

in the Address Domain

Gert Cauwenberghs

BENG 207 Neuromorphic Integrated Bioelectronics

gert@ucsd.edu

Deep Learning in Spike-Based Neuromorphic Systems

- Neural Sampling: Integrate & Fire (I&F) neurons can perform MCMC sampling of a Boltzmann distribution
- Restricted Boltzmann Machines can be trained using STDP

• 92% accuracy on MNIST hand-written digit recognition task

Neural Sampling with Noisy Integrate-and-Fire Neurons

We identified conditions under which spike trains from general integrateand-fire neurons in the presence of noise generate Monte-Carlo Markov Chain (MCMC) samples from a Boltzmann distribution

This framework provides the foundation for eventdriven on-line stochastic learning using contrastive divergence in Boltzmann machines

Event-Driven Contrastive Divergence *On-line Training of Boltzmann Machines Using STDP*

 $\Delta w \propto \langle vh
angle_{
m data} - \langle v^k h^k
angle_{
m recon}$ CD training with standard RBM

eCD on-line training with I&F RBM

- Emulates contrastive divergence (CD) for training standard Restricted Boltzmann Machines (RBMs) using neural sampling with integrate-andfire neurons.
- On-line spike event-driven training using spike-timing dependent plasticity (STDP)
 - Temporally symmetric form produces the correlations *<vh>* in on-line form
 - Modulation g(t) controls wake-sleep phases (data vs. reconstruction)

Event-Driven Contrastive Divergence Learning a Model of MNIST Hand-Written Digits

- MNIST hand-written digit recognition accuracy:
 - CD with standard RBM: 93.6%
 - eCD with neural sampling: 91.9%
- Extends to deep learning across multiple RBM layers for greater accuracy

Event-Driven Contrastive Divergence Inference, Generation, and Cue Integration

- Generative power of the Boltzmann machine model:
 - Bottom-up: Classification of incoming data
 - Top-down: Generation of prototypical data for a class label
 - *Hybrid: Cue integration with missing data based on class label priors*

Spiking Synaptic Sampling Machine (S³M) Biophysical Synaptic Stochasticity in Inference and Learning

The S³M requires fewer synaptic operations (SynOps) than the equivalent Restricted Boltzmann Machine (RBM) requires multiply-accumulate (MAC) operations at the same accuracy.

- Stochastic synapses for spike-based Monte Carlo sampling
 - Models biophysical origins of noise in neural systems
 - Activity dependent noise: multiplicative synaptic sampling rather than additive neural sampling
 - Sparsity in neural activity and in synaptic connectivity
- Online unsupervised learning with STDP
 - Biophysical model of spike-based learning
 - Event-driven contrastive divergence

Emre O. Neftci, Bruno U. Pedroni, Siddharth Joshi, Maruan Al-Shedivat, Gert Cauwenberghs, "Stochastic Synapses Enable Efficient Brain-Inspired Learning Machines," *Frontiers in Neuroscience*, vol. 10, pp. 3389:1-16 (DOI: 10.3389/fnins.2016.00241), 2016.

Spike-Timing Dependent Eligibility *Reinforcement Learning by Reward Modulation of STDP*

STDE-based temporal-difference reinforcement learning of the game of Tic-Tac-Toe

- Spike timing-dependent eligibility (STDE):
 - Variant on biologically inspired spike timing-dependent plasticity (STDP)
 - Quantifies the sensitivity of post-synaptic spiking probability, conditioned on timed presynaptic spike input, to synaptic strength
 - Direct replacement for input activity term in Hebb-type incremental outerproduct update rules for gradient-based learning in rate-based ANNs
- Temporal-difference reinforcement learning
 - STDE-based Dopamine modulation of reward

P. Frady et al, 2009

Gert Cauwenberghs

gert@ucsd.edu

Adaptive Low-Power Sensory Systems

2pJ/MAC 14b 8×8 Linear Transform Mixed-Signal Spatial Filter in 65nm CMOS with 84dB Interference Suppression

S. Joshi et al, ISSCC 2017

Charge-domain Analog Signal Processing Low-dimensional, Low-resolution Digital Coding

Digital Adaptation

Linear Transform Analog and Mixed-Signal Sensory Processing

- Application Enabler
- Lower Power
- Analog processing gain lowers A/D requirements

Processing gain: Improvement in SNR/DR due to ASP

S. Joshi et al, "2pJ/MAC 14b 8×8 Linear Transform Mixed-Signal Spatial Filter in 65nm CMOS with 84dB Interference Suppression," ISSCC 2017

Gert Cauwenberghs

Spatial Processing Gain

Dot Product Unit

S. Joshi et al, "2pJ/MAC 14b 8×8 Linear Transform Mixed-Signal Spatial Filter in 65nm CMOS with 84dB Interference Suppression," ISSCC 2017

Gert Cauwenberghs

Dot Product Unit

Nested Thermometer Multiplying DAC

Nested Thermometer Multiplying DAC

Nested Thermometer Multiplying DAC

System Measurements

Measurements: Angular Resolution

Measurements: SIR

Application: MIMO Communication

Spatial filtering to separate signal mixture

Application: MIMO Communication

Beamforming Performance (baseband only)

	Tseng et. al. JSSC 2010	Ghaffari et. al. JSSC 2014	Kim et. al. JSSC 2015	This work	
Received EVM (dB)	-25	-	-28.8	-30.8	
Effective number of bits	5	5	8	14	
Angular Resolution (°)	22.5	22.5	<5ª	<1ª	
Interferer Cancellation (dB)	30 ^b	15 ^{b,c}	48 ^b	>80 ^b	
CMOS Technology (nm)	90	65	65	65	
Power at Baseband (mW)	10 ^d	68-195°	1.3	0.396	
Bandwidth at Baseband (MHz)	20	5	3	2.4	
^a Greater than 15 dB cancellation, ^b Cancellation at 45° angular separation, ^c Out of beam,					

^dLO power only, ^eTotal power reported baseband power not reported

S. Joshi et al, "2pJ/MAC 14b 8×8 Linear Transform Mixed-Signal Spatial Filter in 65nm CMOS with 84dB Interference Suppression," ISSCC 2017

Gert Cauwenberghs

BENG 207 Neuromorphic Integrated Bioelectronics

Date	Торіс
9/27, 9/29	Biophysical foundations of natural intelligence in neural systems. Subthreshold MOS silicon models of membrane excitability. Silicon neurons. Hodgkin-Huxley and integrate-and-fire models of spiking neuronal dynamics. Action potentials as address events.
10/4, 10/6	Silicon retina. Low-noise, high-dynamic range photoreceptors. Focal-plane array signal processing. Spatial and temporal contrast sensitivity and adaptation. Dynamic vision sensors.
10/11, 10/13	Silicon cochlea. Low-noise acoustic sensing and automatic gain control. Continuous wavelet filter banks. Interaural time difference and level difference auditory localization. Blind source separation and independent component analysis.
10/18, 10/20	Silicon cortex. Neural and synaptic compute-in-memory arrays. Address-event decoders and arbiters, and integrate-and-fire array transceivers. Hierarchical address-event routing for locally dense, globally sparse long-range connectivity across vast spatial scales.
10/28, 11/1	Review. Modular and scalable design for neuromorphic and bioelectronic integrated circuits and systems. Design for full testability and controllability.
11/1, 11/3	Midterm due 11/2. Low-noise, low-power design. Fundamental limits of noise-energy efficiency, and metrics of performance. Biopotential and electrochemical recording and stimulation, lab-on-a-chip electrophysiology, and neural interface systems-on-chip.
11/8, 11/10	Learning and adaptation to compensate for external and internal variability over extended time scales. Background blind calibration of device mismatch. Correlated double sampling and chopping for offset drift and low-frequency noise cancellation.
11/15, 11/17	Energy conservation. Resonant inductive power delivery and data telemetry. Ultra-high efficiency neuromorphic computing. Resonant adiabatic energy-recovery charge-conserving synapse arrays.
11/22, 11/24	Guest lectures
11/29, 12/1	Project final presentations. All are welcome!