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BENG 207 Neuromorphic Integrated Bioelectronics

Date

9/27, 9/29

10/4, 10/6

10/11, 10/13

10/18, 10/20

10/28, 111

11/1,11/3

11/8, 11/10

11/15, 1117

11/22, 11/24

11/29, 1211

Topic

Biophysical foundations of natural intelligence in neural systems. Subthreshold MOS silicon models of membrane excitability. Silicon
neurons. Hodgkin-Huxley and integrate-and-fire models of spiking neuronal dynamics. Action potentials as address events.

Silicon retina. Low-noise, high-dynamic range photoreceptors. Focal-plane array signal processing. Spatial and temporal contrast
sensitivity and adaptation. Dynamic vision sensors.

Silicon cochlea. Low-noise acoustic sensing and automatic gain control. Continuous wavelet filter banks. Interaural time difference and
level difference auditory localization. Blind source separation and independent component analysis.

Silicon cortex. Neural and synaptic compute-in-memory arrays. Address-event decoders and arbiters, and integrate-and-fire array
transceivers. Hierarchical address-event routing for locally dense, globally sparse long-range connectivity across vast spatial scales.

Review. Modular and scalable design for neuromorphic and bioelectronic integrated circuits and systems. Design for full testability and
controllability.

Midterm due 11/2. Low-noise, low-power design. Fundamental limits of noise-energy efficiency, and metrics of performance. Biopotential
and electrochemical recording and stimulation, lab-on-a-chip electrophysiology, and neural interface systems-on-chip.

Learning and adaptation to compensate for external and internal variability over extended time scales. Background blind calibration of
device mismatch. Correlated double sampling and chopping for offset drift and low-frequency noise cancellation.

Energy conservation. Resonant inductive power delivery and data telemetry. Ultra-high efficiency neuromorphic computing. Resonant
adiabatic energy-recovery charge-conserving synapse arrays.

Guest lectures

Project final presentations. All are welcome!
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Resonant Adiabatic Energy Recovery
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Resonant adiabatic energy recovery in computing: Kerneltron support vector
machine for visual pattern recognition with resonant hot clock adiabatic energy recovery
in charge-domain processing-in-memory computing at 1 fJ of energy per multiply-
accumulate [Karakiewicz et al, 2017, 2012]. Energy recovery logic (ERL) CMOS
adiabatic line drivers recover 98% of the CV? electrostatic energy in the charge-mode

array.
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Resonant Adiabatic Energy Recovery
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Resonant adiabatic energy recovery in communication: Cyclic On-Off Keying
(COOK) modulation for wireless power and telemetry offers record bandwidth efficiency,
allowing to transmit one bit of data every carrier cycle while simultaneously receiving RF
power over the same high-Q inductive link [Ha et al, 2016].

Gert Cauwenberghs BENG 207 Neuromorphic Integrated Bioelectronics gert@ucsd.edu



SVM Pattern Recognition

Sensory
Features

Large-Margin Kernel jif=== | Class Identification
Regression '

Kerneltron:
massively parallel
support vector
“machine” in silicon
(ESSCIRC’2002)




Trainable Modular Vision Systems: The SVM Approach
Papageorgiou, Oren, Osuna and Poggio, 1998

- Strong mathematical
foundations in Statistical
Learning Theory (Vapnik, 1995)

- The training process selects a
small fraction of prototype
support vectors from the data

set, located at the margin on
both sides of the classification

boundary (e.g., barely faces vs.

SVM classification for barely non-faces)

pedestrian and face
object detection
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Trainable Modular Vision Systems: The SVM Approach
Papageorgiou, Oren, Osuna and Poggio, 1998

Training Testing
- The number of support
vectors, in relation to

the number of training
, samples and the vector
Overcompet Represenaton | dimension, determine
I | the generalization
= = = RARS ; performance

k4 4
SVM Classifier Overcomplete Repre sentation | BOth tralnlng and run-

time performance are
e severely limited by the
Y computational
complexity of
oo eon evaluating kernel

= color1326,poly2,+1 .
— color29,poly3,+1 1 funCtlonS

—— color29,poly2,+1
— color29,poly2
— bw29,poly3,+1
— bw29,poly2,+1
bw29,poly2 ROC curve for various
image representations and

dimensions

o
©
T

SVM Classifier

o
=)
T

o
~
T

Detection Rate

o
)
:

107
False Positive Rate

Gert Cauwenberghs BENG 207 Neuromorphic Integrated Bioelectronics gert@ucsd.edu

.
-4




Kernels and Support Vector Machines

Mercer, 1909; Aizerman et al., 1964 . X
Boser, Guyon and Vapnik, 1992

()

—_—
X, =P(x,)
X = P(x)
X, X = B(x,)-B(x)
—
Y= Sign(; a,y,P(x,) P(x) +D) Y= Sign(; a,y, X, X+Db)

K() l D(x;)- D(x) = K(x;,x)

y= Sign(Zg ,y,K(x,X) +b)
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Kernel Machines

Y= Sign(; a,y,K(x, x)+D)

- Gaussian (Radial Basis Function Networks)
[

2
K(x,,%) = exp(- 20 o exp(X2)
- Sigmoid (Two-Layer Perceptron)

K (Xi , X) = tal'lh(L +X;° X) only for certain L

— Polynomial (Splines etc.)
K(x,x)=(+x, -x)"
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Parallel SVM Architecture

MVM - Kernel inner-products are
implemented by parallel
SUPPORT VECTOR matrix-vector

' multiplication (MVM).
Silicon area and power
dissipation are
proportional to number of
support vectors, favoring
sparse SVM solutions.

4

Sparsity in SVM training
also guarantees proper
generalization
performance (Vapnik,

Y= Sign(; oy, K(x,X)+b) 1995).

2
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Kerneltron lll: Adiabatic Support Vector “Machine”
Karakiewicz, Genov, and Cauwenberghs, VLSI’ 2006; CICC’ 2007
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CMOS Logic vs. Adiabatic Computing

Il

=IN[ JFiN=

CMOS logic Energy recovery logic (ERL)
(Y. Moon, JSSC’96)

«  Dynamic energy dissipation *  'Hot clock’ recycles energy
E. =CVdd? - LC tank resonant clock

* Reversible computation

diss.
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Resonant Charge Energy Recovery
Karakiewicz, Genov, and Cauwenberghs, IEEE JSSC, 2007

capacitive load

Energy (fJ/MAC)
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Incremental and Decremental SVM Learning
Cauwenberghs and Poggio, 2001

Support Vector Machine training requires solving a linearly constrained
quadratic programming problem in a number of coefficients equal to the
number of data points.

An incremental version, training one data point at at time, is obtained by
solving the QP problem in recursive fashion, without the need for QP
steps or inverting a matrix.

* On-line learning is thus feasible, with no more than L’ state variables, where L
is the number of margin (support) vectors.

* Training time scales approximately linearly with data size for large, low-
dimensional data sets.

Decremental learning (adiabatic reversal of incremental learning) allows
to directly evaluate the exact leave-one-out generalization performance
on the training data.

When the incremental inverse jacobian is (near) ill-conditioned, a direct
L1-norm minimization of the a coefficients yields an optimally sparse
solution.
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Trajectory of coefficients a as a function of time during incremental learning,
for 100 data points in the non-separable case, and using a Gaussian kernel.
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SVM Learning Revisited

1 8(2)

Primal Formulation
min: € = 4|w|’ +CY g(z))

w,b

z, =y.(wW-X +b)

z, = yl..(w.xl.r+ b)
margin

a pptential
Q

KKT Conditions
a; = _Cg'(zi)

Z; = EQijaj +Dby,
J

Qz‘j = yiyjK(Xian)

JUaIdI}o09

L

4

1

Dual Formulation

f . oSVeM 1 _
min: &7 =13 R0 - e
) ] l

i

Soft-Margin SVM Classification . _
(Cortes and Vapnik, 1995) subject to': Eyiai =0 and 0=, =<C,Vi
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Sequential On-Line SVM Learning
Chakrabartty, Genov and Cauwenberghs, 2003
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Sequential On-Line SVM Learning
Chakrabartty, Genov and Cauwenberghs, 2003
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Sequential On-Line SVM Learning
Chakrabartty, Genov and Cauwenberghs, 2003
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Effects of Sequential On-Line Learning and Finite Resolution

» Matched
Filter
Response

« Batch * On-Line
Training Sequential
Training

* Floating-
Point e Kerneltron Il

Resolution
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SVM Sequence Estimation

GiniSVM

Sensory
Features

MAP Forward * Sequence ldentification
Decoding

Sub-microwatt
speaker verification
and phoneme
recognition
(NIPS’2004)




MLE vs. MAP Sequence Estimation

X[1] X2 X[N] X[1] X2 X[N]

P [T

Qe=p QO =——p 000 O Qep QO =—p 0600 O —p
q[1] q[2] q[N] q[1] q[2] q[N]

Generative (MLE) Discriminative (MAP)
HMM FDKM

Density models (such as Transition-based speech recognition
mixtures of Gaussians) require

vast amounts of training data to MAP forward decoding

reliably estimate parameters.

P([1,x) pRj2x) | Lransition
probabilities
generated by
large margin
probability

P(12,) regressor

Gert Cauwenberghs BENG 207 Neuromorphic Integrated Bioelectronics gert@ucsd.edu



Forward Decoding Kernel Machines (FDKM)
Chakrabartty and Cauwenberghs (NIPS " 2002)

- Forward decoding of posterior probabilities Q;

E o [n-1]

~ Transition probabilities P;; generated by SVM conditioned on input
data X

Fyln]=P(i] j, X[n]) < f,(X]n])

GiniSVM
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GiniSVM Sparse Probability Regression
Chakrabartty and Cauwenberghs, JMLR 2007

4 g(z)

Huber Loss Function

4y

e -
4 z.=y.(WX. +b)

-1 0 Gini Quadratic
QU Entropy

<. okGini 1 z: 2: _ z: a;
2 j i

i

subject to : E vo =0 and0=a, =C,with H_, (a)=4y(l-a)a
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GiniSVM Probability Regression

MVM Gini quadratic

; j entropy in SVM
SUPPORT VECTOR . training leads to

’ ’ sparse, large-margin

regression of class
probabilities
(Chakrabartty et al.
2002)

BELLEEN

y

EP(i|x)=1
0=<P@|x)=1

NORMALIZATION

P(i|x)}(

PN = £,(X) = B AVK(XX)+D
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FDKM Architecture

MVM
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GiniSVM/FDKM Processor
Chakrabartty and Cauwenberghs (NIPS’2004)
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FDKM Dynamic Sequence Detection (80 nW)

Chakrabartty and Cauwenberghs (NIPS’ 2004)
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FDKM Training Formulation

Chakrabartty and Cauwenberghs, 2002

- Large-margin training of state transition probabilities, using
regularized cross-entropy on the posterior state probabilities:
N-15-1 S—1 §-1
H=CY Y ynlloga[n]-5 Y ¥ |w; [
=0 1= 7=0 7=
- Forward Decoding Kernel Machines (FDKM) decompose an upper
bound of the regularized cross-entropy (by expressing concavity of
the logarithm in forward recursion on the previous state):

HZjZOHj

which then reduces to S independent regressions of conditional
probabilities, one for each outgoing state:

log [n] -

Gert Cauwenberghs BENG 207 Neuromorphic Integrated Bioelectronics gert@ucsd.edu



Recursive MAP Training of FDKM

Epoch 1 Epoch 2
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Phonetic Experiments (TIMIT)

Chakrabartty and Cauwenberghs, 2002

Features: cepstral coefficients for Vowels, Stops, Fricatives,
Semi-Vowels, and Silence

A%

B FDKM
| Static
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Recognition Rate
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On-Chip TIMIT Phone Recognition

Chakrabartty and Cauwenberghs (NIPS’2004)

.- Log Spectral
Features

Programmable Analog Filter FDKM
Bank (Deng et al, 2004 ) Chip

- 6 phones /t/n/r/ow/ah/eh/ from TIMIT corpus

— Thresholded Mel-cepstral features from log-compressed analog
filterbank

Detection ThreF bold
|




On-Chip Speaker Verification (840nW)

Chakrabartty and Cauwenberghs (NIPS’2004)

- 1 speaker and 10 imposters from YOHO 95_;.. ] Simuiaied |
dataset : ‘b b | —4—  Measured

- 92% recognition accuracy on 48 true and )
432 imposter out-of-sample utterances i1

- 352 support vectors (47% FDKM chip
capacity)

- 840 nW power at 25msec frame rate

0 5 10 15 20 25
False Positive (%)

Correct Speaker Imposter
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Date

9/27, 9/29

10/4, 10/6

10/11, 10/13

10/18, 10/20

10/28, 111

11/1,11/3

11/8, 11/10

11/15, 11/17

11/22, 11/24

11/28, 12/1

Topic

Biophysical foundations of natural intelligence in neural systems. Subthreshold MOS silicon models of membrane excitability. Silicon
neurons. Hodgkin-Huxley and integrate-and-fire models of spiking neuronal dynamics. Action potentials as address events.

Silicon retina. Low-noise, high-dynamic range photoreceptors. Focal-plane array signal processing. Spatial and temporal contrast
sensitivity and adaptation. Dynamic vision sensors.

Silicon cochlea. Low-noise acoustic sensing and automatic gain control. Continuous wavelet filter banks. Interaural time difference and
level difference auditory localization. Blind source separation and independent component analysis.

Silicon cortex. Neural and synaptic compute-in-memory arrays. Address-event decoders and arbiters, and integrate-and-fire array
transceivers. Hierarchical address-event routing for locally dense, globally sparse long-range connectivity across vast spatial scales.

Review. Modular and scalable design for neuromorphic and bioelectronic integrated circuits and systems. Design for full testability and
controllability.

Midterm due 11/2. Low-noise, low-power design. Fundamental limits of noise-energy efficiency, and metrics of performance. Biopotential
and electrochemical recording and stimulation, lab-on-a-chip electrophysiology, and neural interface systems-on-chip.

Learning and adaptation to compensate for external and internal variability over extended time scales. Background blind calibration of
device mismatch. Correlated double sampling and chopping for offset drift and low-frequency noise cancellation.

Energy conservation. Resonant inductive power delivery and data telemetry. Ultra-high efficiency neuromorphic computing. Resonant
adiabatic energy-recovery charge-conserving synapse arrays.

Guest lectures

Project final presentations. All are welcome!

Gert Cauwenberghs BENG 207 Neuromorphic Integrated Bioelectronics gert@ucsd.edu



