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BENG 207 Neuromorphic Integrated Bioelectronics

Date

9/27, 9/29

10/4, 10/6

10/11, 10/13

10/18, 10/20

10/28, 111

11/1,11/3

11/8, 11/10

11/15, 11/17

11/22, 11/24

11/29, 1211

Topic

Biophysical foundations of natural intelligence in neural systems. Subthreshold MOS silicon models of membrane excitability. Silicon
neurons. Hodgkin-Huxley and integrate-and-fire models of spiking neuronal dynamics. Action potentials as address events.

Silicon retina. Low-noise, high-dynamic range photoreceptors. Focal-plane array signal processing. Spatial and temporal contrast
sensitivity and adaptation. Dynamic vision sensors.

Silicon cochlea. Low-noise acoustic sensing and automatic gain control. Continuous wavelet filter banks. Interaural time difference and
level difference auditory localization. Blind source separation and independent component analysis.

Silicon cortex. Neural and synaptic compute-in-memory arrays. Address-event decoders and arbiters, and integrate-and-fire array
transceivers. Hierarchical address-event routing for locally dense, globally sparse long-range connectivity across vast spatial scales.

Review. Modular and scalable design for neuromorphic and bioelectronic integrated circuits and systems. Design for full testability and
controllability.

Midterm due 11/2. Low-noise, low-power design. Fundamental limits of noise-energy efficiency, and metrics of performance. Biopotential
and electrochemical recording and stimulation, lab-on-a-chip electrophysiology, and neural interface systems-on-chip.

Learning and adaptation to compensate for external and internal variability over extended time scales. Background blind calibration of
device mismatch. Correlated double sampling and chopping for offset drift and low-frequency noise cancellation.

Energy conservation. Resonant inductive power delivery and data telemetry. Ultra-high efficiency neuromorphic computing. Resonant
adiabatic energy-recovery charge-conserving synapse arrays.

Guest lectures

Project final presentations. All are welcome!
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Large-Scale Mixed-Signal Sensory Computation

Example: VLSI Analog-to-digital vector quantizer
(Cauwenberghs and Pedroni, 1997)

Massive Parallelism
- distributed representation
- local memory and adaptation
- analog sensory interface
- physical computation
- analog accumulation on
single wire
Scalable

silicon area and power scale
linearly with throughput

Highly Efficient

factor 100 to 10,000 less
energy/operation than DSP

Limited Precision

- analog mismatch and
nonlineary (WYDINWYG)

- fix: adaptation in
redundancy



Learning on Silicon

INPUTS system Jourrurs  Adaptation:

' wil
, - necessary for robust performance
under variable conditions and in

£(p) unpredictable environments

- also compensates for imprecision
in analog computation

- avoids ad-hoc programming,
tuning, and manual parameter
adjustment

REFERENCE

INPUTS ourruts  Learning:
—y—e|  SYSTEM

- generalization of output to
previously unknown, although
similar, stimuli

- system identification to extract
relevant environmental
parameters

E(p)

Cauwenberghs & Bayoumi, Eds., Learning on Silicon, Kluwer 1999.
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Adaptive Elements

Adaptation:
Autozeroing (high-pass filtering) outputs

Offset Correction outputs
e.g. Image Non-Uniformity Correction

Equalization /Deconvolution inputs, outputs
e.g. Source Separation; Adaptive Beamforming

Learning:
Unsupervised Learning inputs, outputs
e.g. Adaptive Resonance; LVQ; Kohonen

Supervised Learning inputs, outputs, targets
e.g. Least Mean Squares; Backprop

Reinforcement Learning reward [ punishment
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Incremental Outer-Product Learning in Neural Nets

Multi-Layer Perceptron: Xi :f(z Pij xj)

Outer-Product Learning Update: Ap ii=1n Xj €
- Hebbian (Hebb, 1949): e;=2X;
, target |
- LMS Rule Widrow-Hoff, 1960): €; = f ( - xi)

- Backpropagation (Werbos, Rumelhart, LeCun): € =f ']’° Z Pij€i
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Technology

Incremental Adaptation:

- Continuous-Time: I
adapt

J——

C %Vstored =1 adapt

Czadapt
— Discrete-Time:

C AVstored = Qadapt

Storage:
- Volatile capacitive storage (incremental refresh)
- Non-volatile storage (floating gate)

Precision:
— Only polarity of the increments is critical (not amplitude).

- Adaptation compensates for inaccuracies in the analog
implementation of the system.
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Dynamic Memory and Incremental Adaptation
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Cauwenberghs, ALOG 1998
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Floating-Gate Non-Volatile Memory and Adaptation

Paul Hasler, Chris Diorio, Brad Minch, Carver Mead, ...

* Hot electron injection
— ‘Hot’ electrons injected from drain onto

Vdd floating gate of M1.

- Injection current is proportional to drain
current and exponential in floating-gate to

drai It ~5V).
oM Vo e

E f - Electrons tunnel through thin gate oxide

from floating gate onto high-voltage
(~30V) n-well.

Tunneling voltage decreases with
decreasing gate oxide thickness.

Source degeneration

- Short-channel M2 improves stability of
closed-loop adaptation (Vd open-circuit).

M2 is not required if adaptation is
regulated (Vd driven).

Current scaling

- In subthreshold, Iout is exponential both
in the floating gate charge, and in control
voltage Vg.
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Word Line

Phase Change Memory Technology

Emitter pre-contact
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G. Atwood, R. Bez, “90nm Phase Change Technology with

uTrench and Lance Cell Elements,” VLS| Symp, 2007.



Reconfigurable Synaptic Connectivity and Plasticity
From Microchips to Large-Scale Neural Systems

Sender address

Synapse index
Receiver address
Weight polari@y
—-t-4-F = Weight magnitude
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Address-Event Synaptic Connectivity and Plasticity

Goldberg, Cauwenberghs and Andreou, 2000

Sender address
Synapse index

Receiver address
Weight polarity
Weight magnitude

Outgoing AP

Incoming AP

Receiver

N

N © RIRi[=]
BERIEYEE 2 © RS
NERE-Y N 00 — R[]

Sender Integrate-and-fire array

Presynaptic neuron Postsynaptic neuron .
Look-up table transceiver (IFAT)

(DRAM)

- 'Virtual’ synapses
» Dynamically reconfigurable T
« Wide-ranging connectivity T : s
.. . .. g,(t) g,(t) . 3
* Rewiring and synaptic plasticity

Row decoding

- Quantal release: R=npqg i E— B —
* n: multiplicity (repeat event) T T ...
» p: probability of release (toss a coin)

* q. quantity released (set amplitude) IFAT2 (2000)
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Spike Timing-Dependent Plasticity
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Spike Timing-Dependent Plasticity

in the Address Domain

T, o
Presynaptic w . Posgtsxnapﬂc queue
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Deep Learning in Spike-Based Neuromorphic Systems

e Neural Sampling: Integrate & Fire (1&F) neurons can perform MCMC
sampling of a Boltzmann distribution
e Restricted Boltzmann Machines can be trained using STDP

Vmem

Class Neuron

100 ms

e 92% accuracy on MNIST hand-written digit recognition task

E. Neftci et al, “Event-driven contrastive divergence for spiking neuromorphic
systems”, Frontiers in Neuroscience, doi: 10.3389/fnins.2013.00272, 2014



Neural Sampling with Noisy Integrate-and-Fire Neurons

Stochastic Q\ Q\ Q\
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E. Neftci et al, “Event-driven contrastive divergence for spiking neuromorphic
systems”, Frontiers in Neuroscience, doi: 10.3389/fnins.2013.00272, 2014



Event-Driven Contrastive Divergence
On-line Training of Boltzmann Machines Using STDP

() @) /@)
TN/ -
V) @) () (v) glt) = —1 (recon)

Aw o< (Vh)qata — (VFP) recon %q = g(t)STDP(v(t), h(t))

CD training with standard RBM eCD on-line training with I&F RBM

- Emulates contrastive divergence (CD) for training standard Restricted
Boltzmann Machines (RBMs) using neural sampling with integrate-and-
fire neurons.

- On-line spike event-driven training using spike-timing dependent
plasticity (STDP)

» Temporally symmetric form produces the correlations <vh> in on-line form
» Modulation g(t) controls wake-sleep phases (data vs. reconstruction)

E. Neftci et al, “Event-driven contrastive divergence for spiking neuromorphic
systems”, Frontiers in Neuroscience, doi: 10.3389/fnins.2013.00272, 2014
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Event-Driven Contrastive Divergence
Learning a Model of MNIST Hand-Written Digits
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- MNIST hand-written digit recognition accuracy:
« CD with standard RBM: 93.6%
» eCD with neural sampling: 91.9%

- Extends to deep learning across multiple RBM layers for greater accuracy

E. Neftci et al, “Event-driven contrastive divergence for spiking neuromorphic
systems”, Frontiers in Neuroscience, doi: 10.3389/fnins.2013.00272, 2014
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Event-Driven Contrastive Divergence
Inference, Generation, and Cue Integration
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— Generative power of the Boltzmann machine model:
» Bottom-up: Classification of incoming data
« Top-down: Generation of prototypical data for a class label
* Hybrid: Cue integration with missing data based on class label priors

E. Neftci et al, “Event-driven contrastive divergence for spiking neuromorphic
systems”, Frontiers in Neuroscience, doi: 10.3389/fnins.2013.00272, 2014



Spiking Synaptic Sampling Machine (S3M)

Biophysical Synaptic Stochasticity in Inference and Learning

Synaptic stochasticity as biophysical model
of continuous DropConnect

Presynaptic
Neuron Zpre(t) bbb

Stochastic £(t) 1 0 1 0001

Synapse & (t)—

Postsynaptic Upost(t) o
Neuron Zpost (t)

— SSM

0.92 0.95
. MNIST Recognition Accuracy
Visible 228/ /NI
Layer

e e B The S3M requires fewer synaptic operations
W +  E(1) (SynOps) than the equivalent Restricted
Boltzmann Machine (RBM) requires
multiply-accumulate (MAC) operations at
the same accuracy.

- Stochastic synapses for spike-based Monte Carlo sampling
Models biophysical origins of noise in neural systems

Activity dependent noise: multiplicative synaptic sampling rather than additive neural
sampling

Sparsity in neural activity and in synaptic connectivity

— Online unsupervised learning with STDP Emre O. Neftci, Bruno U. Pedroni, Siddharth Joshi,

) ) ] ) Maruan Al-Shedivat, Gert Cauwenberghs, “Stochastic
» Biophysical model of spike-based learning Synapses Enable Efficient Brain-Inspired Learning

R A : : Machines,” Frontiers in Neuroscience, vol. 10, pp.
Event-driven contrastive divergence 3389:1-16 (DOI: 10.3389/fnins.2016.00241), 2016.

Time-varying Bernoulli random masking
of weights

Gert Cauwenberghs BENG 207 Neuromorphic Integrated Bioelectronics gert@ucsd.edu



Spike-Timing Dependent Eligibility
Reinforcement Learning by Reward Modulation of STDP

' ' ' f,::: 27 input neurons
e (board positions)

x10
1.5¢

STDE- 200 hidden neurons

modulated ® Value (V)
A | reinforcement P 3

AP(spike) Dopamine‘ Temporal
Astrength difference

| o o R

NN TN TN AT

™ Relate spike timing (ot —tyre) R EL:
Relative spike timing (¢post — Epre)

Spike timing-dependent eligibility STDE-based temporal-difference reinforcement
(STDE) learning of the game of Tic-Tac-Toe

- Sp11<e timing-dependent eligibility (STDE):
Variant on biologically inspired spike timing-dependent plasticity (STDP)
Quantifies the sensitivity of post-synaptic spiking probability, conditioned on timed pre-
synaptic spike input, to synaptic strength
Direct replacement for input activity term in Hebb-type incremental outerproduct update
rules for gradient-based learning in rate-based ANNs
- Temporal-difference reinforcement learning
 STDE-based Dopamine modulation of reward P. Frady et al, 2009
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Adaptive Low-Power Sensory Systems

2pJ/IMAC 14b 8x8 Linear
Transform Mixed-Signal
Spatial Filter in 65nm CMOS
with 84dB Interference
Suppression

S. Joshi et al, ISSCC 2017

Digital

Outputs
Sensor

Digital adaptation

Charge-domain Low-dimensional, Digital
Analog Signal Low-resolution Adaptation
Processing Digital Coding




Linear Transform Analog and Mixed-Signal
Sensory Processing

Analog Digital

Outputs
Sensor

Digital adaptation

* Application Enabler
 Lower Power
« Analog processing gain lowers A/D requirements

Processing gain: Improvement in SNR/DR due to ASP

S. Joshi et al, “2pJ/MAC 14b 8x8 Linear Transform Mixed-Signal Spatial Filter in 65nm CMOS with
84dB Interference Suppression,” ISSCC 2017
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Spatial Processing Gain

ADC Dynamic Range

information 22-bits to resolve

Conventional T. both signal

and interference

— Signal
—— Interferer -
Amplification Digitization

>

8-bits to resolve
signal only

14-bit Analog spatial
processing

<€

Analog Signal

A Digitization
Conditioning
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Dot Product Unit

Single DPU Channel

e n A
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arrayed Dot \
Product Units
(DPUs) \‘

The spatial filter is
composed of 8

S. Joshi et al, “2pJ/MAC 14b 8x8 Linear Transform Mixed-Signal Spatial Filter in 65nm CMOS with
84dB Interference Suppression,” ISSCC 2017
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Dot Product Unit

| T Parallel
" Xg 8 accumulate

Nested Thermometer yi=A Z x;W, ;|| at VGA input.
Multiplying DAC 1




Nested Thermometer Multiplying DAC

7 bits 7 bits
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Nested Thermometer Multiplying DAC
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Nested Thermometer Multiplying DAC

Main Buffer Auxiliary Buffer

[Joshi TCAS-II 2016]

Gert Cauwenberghs BENG 207 Neuromorphic Integrated Bioelectronics gert@ucsd.edu



System Measurements
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Measurements: Angular Resolution

== Expected suppression @ 14b
90% confidence bound @ 14b
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Measurements: SIR
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Application: MIMO Communication

Spatial filtering to separate signal mixture
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Application: MIMO Communication

Beamforming Performance (baseband only)

Tseng et. al. Ghaffariet. al. Kim et. al. This work
JSSC 2010 JSSC 2014 JSSC 2015
Received EVM (dB) -25 - -28.8 -30.8
Effective number of bits 5 5 8 14
Angular Resolution (°) 22.5 22.5 <52 <1a
Interferer Cancellation (dB) 30b 15b.c 48P >80P
CMOS Technology (nm) 90 65 65 65
Power at Baseband (mW) 10d 68-195¢ 1.3 0.396
Bandwidth at Baseband (MHz) 20 5 3 2.4

aGreater than 15 dB cancellation, PCancellation at 45° angular separation, €Out of beam,
d_O power only, €Total power reported baseband power not reported

S. Joshi et al, “2pJ/MAC 14b 8x8 Linear Transform Mixed-Signal Spatial Filter in 65nm CMOS with
84dB Interference Suppression,” ISSCC 2017
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Date

9/27, 9/29

10/4, 10/6

10/11, 10/13

10/18, 10/20

10/28, 111

11/1,11/3

11/8, 11/10

11/15, 11/17

11/22, 11/24

11/28, 12/1

Topic

Biophysical foundations of natural intelligence in neural systems. Subthreshold MOS silicon models of membrane excitability. Silicon
neurons. Hodgkin-Huxley and integrate-and-fire models of spiking neuronal dynamics. Action potentials as address events.

Silicon retina. Low-noise, high-dynamic range photoreceptors. Focal-plane array signal processing. Spatial and temporal contrast
sensitivity and adaptation. Dynamic vision sensors.

Silicon cochlea. Low-noise acoustic sensing and automatic gain control. Continuous wavelet filter banks. Interaural time difference and
level difference auditory localization. Blind source separation and independent component analysis.

Silicon cortex. Neural and synaptic compute-in-memory arrays. Address-event decoders and arbiters, and integrate-and-fire array
transceivers. Hierarchical address-event routing for locally dense, globally sparse long-range connectivity across vast spatial scales.

Review. Modular and scalable design for neuromorphic and bioelectronic integrated circuits and systems. Design for full testability and
controllability.

Midterm due 11/2. Low-noise, low-power design. Fundamental limits of noise-energy efficiency, and metrics of performance. Biopotential
and electrochemical recording and stimulation, lab-on-a-chip electrophysiology, and neural interface systems-on-chip.

Learning and adaptation to compensate for external and internal variability over extended time scales. Background blind calibration of
device mismatch. Correlated double sampling and chopping for offset drift and low-frequency noise cancellation.

Energy conservation. Resonant inductive power delivery and data telemetry. Ultra-high efficiency neuromorphic computing. Resonant
adiabatic energy-recovery charge-conserving synapse arrays.

Guest lectures

Project final presentations. All are welcome!
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