CHAPTER

16

ELECTRONIC COCHLEA

Richard F. Lyon Carver Mead

When we understand how hearing works, we will be able to build amazing
machines with brainlike abilities to interpret the world through sounds—
that is, to hear. As part of our endeavor to decipher the auditory nervous
system, we can use models that incorporate current ideas of how that sys-
tem works to engineer simple electronic systems that hear in simple ways.
The relative success of these engineered systems then helps us to evaluate
our knowledge about hearing, and helps to motivate further research.

As a first step in building machines that hear, we have implemented
an analog electronic cochlea that incorporates much of the current state of
knowledge about cochlear structure and function. The biological cochlea
(inner ear) is a complex three-dimensional fluid-dynamic system, illus-
trated schematically in Figure 16.1. In the process of designing, building,
and testing the electronic cochlea, we have had to put together a coher-
ent view of the function of the biological cochlea from the diverse ideas
in the literature. This view and the resulting design are the subjects of
this chapter.

We hear through the sound-analyzing action of the cochlea and of the
auditory centers of the brain. As does vision, hearing provides a repre-
sentation of events and objects in the world that are relevant to survival.

Portions reprinted with permission from IEEE Transactions on Acoustics, Speech, and
Signal Processing, Vol. 36, No. 7, July 1988. © IEEE 1988.
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FIGURE 16.1 Artist's conception of the cochlea, with cutaway showing a cross section
of a cochlear duct. The bending of the cochlear partition causes a shearing between it
and the tectorial membrane, which can be both sensed and amplified by hair cells in the
organ of Corti. The dashed lines indicate fluid paths from the input at the oval window

and back to the round window for pressure relief.

Just as the natural environment of light rays is cluttered, so is that of sound
waves. Hearing systems therefore have evolved to exploit many cues to separate
out complex sounds. The same systems that have evolved to help cats to catch
mice and to warn rabbits of wolves also serve to let humans speak with other
humans. Except for the highest level of the brain (the auditory cortex), the
hearing systems of these animals are essentially identical.

BASIC MECHANISMS OF HEARING

The cochlea consists of a coiled fluid-filled tube (see Figure 16.1) with a stiff
cochlear partition (the basilar membrane and associated structures) sepa-
rating the tube lengthwise into two chambers (called ducts, or scalae). At one
end of the tube, called the basal end or simply the base, a pair of flexible
membranes called windows connect the cochlea acoustically to the middle-ear
cavity. A trio of small bones called middle-ear ossicles couple sound from
the tympanic membrane (eardrum) into one of the windows, called the oval
window. When the oval window is pushed in by a sound wave, the fluid in the
cochlea moves, the partition between the ducts distorts, and the fluid bulges
back out through the round window. Transducers called hair cells sit along
the edge of the partition in a structure known as the organ of Corti, and are
arranged to couple with the partition motion and the fluid flow that goes with
that motion.
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The distortion of the cochlear partition by sounds takes the form of a travel-
ing wave, starting at the base and propagating toward the far end of the cochlear
ducts, known as the apical end, or apex. As the wave propagates, a filtering
action occurs in which high frequencies are strongly attenuated; the cutoff fre-
quency gradually lowers with distance from base to apex. The inner hair cells,
of which there are several thousand, detect the fluid velocity of the wave as it
passes. At low sound levels, some frequencies are amplified as they propagate,
due to the energy added by the outer hair cells, of which there are about
three times as many as inner hair cells. As the sound level changes, the effective
gain provided by the outer hair cells is adjusted to keep the mechanical response
within a more limited range of amplitude.

The propagation of sound energy as hydrodynamic waves in the fluid and
partition system is essentially a distributed low-pass filter. The membrane ve-
locity detected at each hair cell is essentially a bandpass-filtered version of the
original sound. Analyzing and modeling the function of these lowpass and band-
pass mechanisms is the key to understanding the first stage of hearing. Because
analog circuits cannot easily be made precise, they must be made self-adjusting;
if the circuits must adjust for their own long-term offsets and drifts, they might
as well also adjust to the signal. The use of adaptation to optimize the system
response seems to be a pervasive principle in perception systems, which are built
from sensitive but imprecise components. Lateral inhibition is one term often
applied to physiological systems that self-adjust [von Békésy, 1967].

Traveling Waves

As sounds push on the oval window, a pressure wave is initiated between
the ducts. The fluid is incompressible, and the bone around the cochlea is in-
compressible, so as the pressure wave moves, it displaces the basilar membrane.
When the eardrum is tapped, the middle-ear ossicles tap on the oval window,
and a pressure pulse travels down the length of the cochlea. In propagating,
the pressure pulse deforms the basilar membrane upward; if we could watch, we
would see a little bump traveling along the basilar membrane. There is a well-
defined velocity at which a signal will travel on such a structure, depending on
the physical parameters of the membrane.

If the basilar membrane is thick and stiff, the wave will travel very quickly
along the cochlea; if it is thin and flexible, the wave will travel very slowly. The
changing properties of the basilar membrane control the velocity of propagation
of a wave. Hearing starts by spreading out the sound along this continuous
traveling-wave structure. The velocity of propagation is a nearly exponential
function of the distance along the membrane. The signal starts near the oval
window with very high velocity of propagation, because the basilar membrane is
very thick and stiff at the basal end. As the signal travels away from the oval
window, toward the apical end, the basilar membrane becomes thinner, wider,
and more flexible, so the velocity of propagation decreases—it changes by a factor
of about 100 along the length of the cochlea.
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FIGURE 16.2 A sinusoidal traveling wave on the basilar membrane, in a simplified
rectangular-box model. The basilar membrane (the flexible part of the cochlear partition
between the bony shelves) starts out stiff and narrow at the base and becomes more
compliant and wider toward the apex. Thus, a wave’s propagation velocity and wave-
length decrease—the wavenumber, or spatial frequency, increases—as the wave travels
from base to apex.

Sine-Wave Response

When the sound is a sine wave of a given frequency, it vibrates the basilar
membrane sinusoidally. The wave travels very quickly at the basal end, so it
has a long wavelength. A constant energy per unit time is being put in, but,
as the wave slows down and the wavelength gets shorter, the energy per unit
length builds up, so the basilar membrane gets more and more stretched by the
wave. For any given frequency, there is a region beyond which the wave can no
longer propagate efficiently. The energy is dissipated in the membrane and its
associated detection machinery. Past this region, the wave amplitude decreases
rapidly (faster than exponentially). Figure 16.2 is an artist’s conception of what
the membrane deflection might look like for a given sine wave.

Neural Machinery

The auditory-nerve signal comes out of the machinery in the organ of Corti,
along one side of the basilar membrane. A protrusion called the tectorial mem-
brane is located just above the basilar membrane. We can think about the tec-
torial membrane’s relation to the organ of Corti this way: As the pressure wave
travels along the cochlea, it bends the basilar membrane up and down; when
the basilar membrane is pushed up, the tectorial membrane moves to the right
relative to the basilar membrane. This linkage arrangement is a way of convert-
ing up-and-down motion on the basilar membrane to shearing motion between
it and the tectorial membrane.
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Mounted on the top of the basilar membrane is a row of inner hair cells.
The single row of 3500 (in humans) inner hair cells that runs along the length of
the membrane is the only source of the nerve pulses that travel to the cochlear
nucleus and on up into the brain. All the auditory information is carried by
about 28,000 (in humans) nerve fibers. Everything we hear is dependent on that
set of hair cells and nerve cells. Fine hairs, called stereocilia, protrude from the
end of the inner hair cells; they detect the shearing motion of the membranes
and act as the transducers that convert deflection to an ion current.

Let us consider the behavior of the auditory system for loud signals, in which
situation the outer hair cells are not needed. Signals are propagating down the
cochlea, so there are bumps traveling along the basilar membrane. The bumps
travel quickly at first, and then they slow down. For any given frequency, there
is a point at which the displacement is maximum,; this is the point of maximum
velocity of the vibration of hair cells with respect to the tectorial membrane.

On the scale of a hair cell’s stereocilia—a small fraction of a micron—the
viscosity of the fluid is high. The fans of cilia sticking out of the hair cells have
enough resistance to the motion of the fluid that they bend. When the cilia are
bent one way, the hair cells stimulate the primary auditory neurons to fire. When
the cilia are bent the other way, no pulses are generated. When the cilia are bent
to some position at which the neurons fire, and then are left undisturbed for some
time, the neurons stop firing. From then on, bending the cilia in the preferred
direction away from that new position causes firings. So the inner hair cells act
as auto-zeroing half-wave rectifiers for the velocity of the motion of the fluid.

Quter Hair Cells

The large structure of the organ of Corti on top of the membrane absorbs
energy from the traveling wave. In the absence of intervention from the outer
hair cells, the membrane response is reasonably damped. The ear was designed to
hear transients, and therefore the basilar membrane itself is not a highly resonant
structure.

What then is the purpose of the outer hair cells? There are only a few slow
afferent (o the brain) nerve fibers coming into the auditory nerve from the outer
hair cells. On the other hand, there are a large number of slow fibers coming down
from higher places in the brain into the cochlea, that synapse onto these outer
hair cells. The outer hair cells are not used primarily as receptors—they are used
as muscles. If they are not inhibited by the efferent (from the brain) fibers, they
provide positive feedback into the membrane. If they are bent, they push even
harder in the same direction. They can put enough energy back into the basilar
membrane that it will actually oscillate under some conditions; the resulting
ringing in the ears is called tinnitus.

Tinnitus is not caused by an out-of-control sensory neuron as one might
suppose. It is a mechanical oscillation in the cochlea that is driven by the outer
hair cells. The cells pump energy back into the oscillations of the basilar mem-
brane, and they can pump enough energy to make the traveling-wave structure



284 PART IV SYSTEM EXAMPLES

unstable, so it creates an oscillatory wave that propagates back out through the
eardrum into the air. In 1981, Zurek and Clark [Zurek et al., 1981] reported
spontaneous acoustic emission from a chinchilla that made such a squeal that it
could be heard from several meters away by a human’s unaided ear. An excellent
and insightful overview of the role of outer hair cells for active gain control in the
auditory system is given by Kim. In a classic monument of understatement, he
comments on the chinchilla results, “It is highly implausible that such an intense
and sustained acoustic signal could emanate from a passive mechanical system”
[Kim, 1984, p. 251].

So, the outer hair cells are used as muscles and their function is to reduce
the damping of the basilar membrane when the sound input would be otherwise
too weak to hear. This arrangement provides not just gain, but also control of
the gain, it controls gain by a factor of 100 in amplitude (10,000 in energy).
When the signal is small, the outer hair cells are not inhibited and they feedback
energy. This system of automatic gain control (AGC) works for sound power
levels within a few decades of the bottom end of our hearing range by making
the structure slightly more resonant and thereby much higher gain—by reducing
the damping until it is negative in some regions. We will discuss the details of
gain control after we have developed the basilar membrane model.

Based on the threshold of hearing and linear extrapolations from observa-
tions on loud signals, researchers once estimated that a displacement of the cilia
by less than one-thousandth of an angstrom (10~3 angstrom or 10~!3 meter)
would be large enough to give a reasonable probability of evoking a nerve pulse.
Because the detectability of sounds near the threshold of hearing involves active
mechanical amplification, the actual motion sensed probably is on the order of
1 angstrom of basilar-membrane displacement or hair-cell bending.

WAVE PROPAGATION

As we have discussed, sounds entering the cochlea initiate traveling waves of
fluid pressure and cochlear-partition motion that propagate from the base toward
the apex. The fluid-mechanical system of ducts separated by a flexible partition
is like a waveguide, in which wavelength and propagation velocity depend on
the frequency of a wave and on the physical properties of the waveguide. In
the cochlea, the physical properties of the partition are not constant with z,
but instead change radically from base to apex. The changing parameters lead
to the desirable behavior of sorting out sounds by their frequencies or time
scales; unfortunately, the parameter variation makes the wave analysis a bit more
complex. In this section, we will discuss the mathematics of waves in uniform
and nonuniform media, including the cochlea.

The instantaneous value W of the pressure or displacement of a wave prop-
agating in a one-dimensional uniform medium due to a sine-wave input can be
expressed as

W(z,t) = A(z) cos(kx — wt)
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If frequency w and wavenumber k (spatial frequency) are positive and real and A
is constant, W is a wave propagating to the right (toward +z) at a phase velocity
¢ = w/k with no change in amplitude. If the wavenumber k is complex, the wave
will either grow or die out exponentially with distance, depending on the sign of
the imaginary part of k.

Differential equations for W can be derived from some approximation to the
physics of the system. We can then convert the differential equations to alge-
braic equations involving w, k, and parameters of the system by a generalization
of the technique described in Chapter 8, noting that W can be factored out of
its derivatives when A(z) is constant (or if A is assumed constant when it is
nearly so). These algebraic equations relating w and k are referred to as disper-
sion relations. Pairs of w and k that satisfy the dispersion relations represent
waves compatible with the physical system.

From the dispersion relations, we can calculate the velocity of the wave.
If the velocity is independent of w, all frequencies travel at the same speed and
the medium is said to be nondispersive. In the cochlea, higher frequencies
are known to propagate more slowly than do lower frequencies, and the basilar
membrane is therefore dispersive. In a dispersive medium, we distinguish two
different velocities. The phase velocity ¢ = w/k is the velocity at which any
given crest or valley of the wave propagates. The group velocity U = dw/dk is
the speed at which the wave envelope and energy propagate.

Dispersion relations generally have symmetric solutions, such that any wave
traveling in one direction has a corresponding solution, of the same frequency,
traveling with the same speed in the opposite direction. If, for a given real value
of w, the solution for k is complex, then the equations imply a wave amplitude
that is growing or diminishing exponentially with distance z. If the imaginary
part k; of k = ky + jk; is positive (for the complex exponential wave conventions
we have adopted), the wave diminishes toward the right (+z); in any dissipative
system, a wave diminishes in the direction that it travels. The wave may thus be
written as the damped sinusoid

W (z,t) = Acos (k,z — wt)e ki

Fluid Mechanics of the Cochlea

In the cochlea, finding the relations between w and k is more complex than
is determining them for a one-dimensional wave system, such as a vibrating
string. We must first work out the fluid-flow problem in two or three dimensions;
ultimately, we can represent displacement, velocity, and pressure waves on the
cochlear partition in one dimension as the relation between k and w changes
with z (conventionally referred to as the cochlear place dimension).

It is highly likely that the lowest-order loss mechanism in the cochlea is the
viscous drag of fluid moving in a boundary layer near the basilar membrane and
through the small spaces of the organ of Corti. The sensitive cilia of the inner
hair cells that detect motion are moved by viscous drag. The outer hair cells also
interact with the fluid and membranes in the organ of Corti, and are known to
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be a source of energy, rather than a sink. At low sound levels, the outer hair cells
can supply more than enough energy to make up for the energy lost to viscous
drag. We therefore model the effects of the outer hair cells as a negative damping.

The analysis of the hydrodynamic system of the cochlea yields a relation
among frequency, place, and complex wavenumber. The analyses we used are
based on three approximations commonly employed to make the hydrodynamics
problem relatively simple:

1. We assume that the cochlear fluids have essentially zero viscosity, so the
sound energy is not dissipated in the bulk of the fluid, but rather is trans-
ferred into motion of the organ of Corti

2. We assume that the fluid is incompressible, or equivalently that the velocity
of sound in the fluid is large compared to the velocities of the waves on the
cochlear partition

3. We assume the fluid motions to be small, so we can neglect second-order
motion terms; for sound levels within the normal range of hearing, this is a
good approximation

The details of the hydrodynamic analysis and reasoning about physical ap-
proximations are too lengthy to include in this chapter [Lyon et al., 1988], but
we can summarize the results by the short-wave dispersion relation (with com-
plex k), which is

w?p = £k[S — jw(B + k*7v)) (16.1)

where 3 is a low-order (viscous) loss coefficient (which may be negative in the
actively undamped case), v is a high-order (bending) loss coefficient, S is the
membrane stiffness, and p is the mass density of the fluid. Parameters S and 7
are functions of place, but at any given place are fixed for all time. The active
negative damping term 3 also is a function of place, and changes slowly with
time as the system adapts to changes in incoming sound level. The sign of the
right-hand side of Equation 16.1 is taken as positive for positive w, and negative
for negative w.

Because the physical parameters in Equation 16.1 are changing with z,
a closed-form solution is not possible except under specific restrictions of form.
Nevertheless, excellent approximate solutions for wave propagation in such non-
uniform media are well known, and correspond to a wave propagating locally
according to local wavenumber solutions. Any small section of the medium, of
length Az, over which the properties change slowly behaves just as would a
small section in a uniform medium: It contributes a phase shift, k. Az, and a log
gain, —k;Az. We also may need to adjust the amplitude A(z) to conserve energy
as energy-storage parameters such as the membrane stiffness change, even in a
lossless medium.

In the cochlea, the amplitude of the pressure wave remains nearly constant
as the wave propagates, but the amplitude of the velocity or displacement wave
grows to conserve energy as the stiffness decreases.
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Scaling

A wave medium is said to scale (or be scale-invariant) if the response
properties at any point are just like those at any other point, with a change in
time scale. The response properties of the cochleas of all known animals are ap-
proximately scale-invariant over most of the length of the basilar membrane. This
scaling property is achieved by an exponential slowing of the wave-propagation
velocity with the distance z. In a system that scales, the response for all places
can be specified as a single transfer function H(f),

f=w/wn

where f is a nondimensional normalized frequency, and wy is any conveniently
defined natural frequency that depends on the place—for example, the peak
in the frequency response. Because of the assumed exponential form for the
variation of parameters, we can write wy as

wn = woe =%
where wy is the natural frequency at x = 0 (at the base), and d,, is the charac-
teristic distance in which the velocity, and therefore wy, decreases by a factor
of e.

Changing to a log-frequency scale in terms of [y = log f, we define the
function G(ly) = H(f), which we can write as

w w T
G(l_f) =iy (log ;;) =G (log “—)0" = Z)

This equation shows that the transfer function G expressed as a function of log
frequency Iy is identical to the transfer function for a particular frequency w
expressed as a function of place z, for an appropriate offset and place scaling.
Thus, we can label the horizontal axes of transfer-function plots interchange-
ably with either place or log-frequency units, for a particular frequency or place
respectively.

In the cochlea, the function G' will be lowpass. Above a certain cutoff fre-
quency, depending on the place, the magnitude of the response will quickly
approach zero; equivalently, beyond a certain place, depending on frequency, the
response will quickly approach zero.

The stiffness is the most important parameter of the cochlear partition that
changes from base to apex, and it has the effect of changing the characteristic
frequency scale with place (wn varies as the square root of stiffness if other
parameters, such as duct size, are constant). Over much of the z dimension
of real cochleas, the stiffness varies approximately exponentially [Dallos, 1978].
The scaling assumption simply allows us the convenience of summarizing the
response of the entire system by a single function G, and does not prevent us from
adopting more realistic parameter variations in the region where the variation is
not exponential.
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Approximate Wavenumber Behavior

It 1s instructive to look at approximate solutions to Equation 16.1 that make
clear the dependence of the wavenumber on the parameters, because it is this
dependence that relates the fluid dynamics to the circuit model we will describe
later. In practice, more exact solutions for k may be achieved by Newton's
method, starting from simple approximations such as those we discuss here.

Starting with real k, we obtain a first approximation to the dispersion re-
lation by setting the imaginary part of Equation 16.1 to zero. This lossless ap-
proximation is

2
w
k29 -
S
Using this approximate solution for k,, we can obtain a first approximation

for the imaginary part k; by solving for the imaginary part of Equation 16.1,
assuming that k; is much less than k, and ignoring terms with k? and k}:

_keBu | kyw

BRrsdiay
. BPp e
) S4

Because these relations are derived in the short-wavelength limit, they are
not applicable at very low frequencies. However, they can give us an excellent
representation for the behavior of the peak frequency and the characteristics of
the high-frequency cutoff.

We can interpret these complex wavenumber approximations either as fre-
quency-dependent at a constant place (constant S, 3, and 7), or as place-depend-
ent at a constant frequency (constant w). Thus, a wave of frequency w will
propagate until the damping gets large; the loss per distance, k;, grows ultimately
as w’ or e"/% (assuming the exponential dependence of S discussed earlier,
and with v proportional to wy and therefore to e=*/%). For a given frequency,
the damping is near zero for small 2 and becomes dominant very quickly as
approaches a cutoff place z¢. Similarly, at a given place, low frequencies are
propagated with little loss; as w grows, however, the loss grows quickly, and
waves above a cutoff frequency we are heavily attenuated.

The cochlea is known to have sharp cutoff behavior, so it is reasonable to
suppose that only the high-order v loss term is significant in determining the
cutoff points. We can estimate the cutoff frequency to be near the point where k;
becomes comparable to k,. Based on the previous simple approximations,

we = (8%/4p)'/°

If the system scales, cutoff frequencies and cutoff places are related expo-
nentially:

we = (53 /700%) B g
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where the subscript 0 refers to values at the base (z = 0). If the damping and
stiffness coefficients do not scale exponentially, there is still a cutoff place as a
function of frequency, but it is not a simple function of logw.

The best frequency, or frequency of highest wave amplitude, will be some-
what less than the cutoff frequency, for any place. Because the cilia of the hair
cells sense the velocity or displacement of the membrane, we should calculate the
best frequency using the velocity rather than the displacement of the cochlear
partition. Conversion from pressure to velocity involves a spatial differentia-
tion, contributing another factor of k, or a tilt in the place response of about
12 decibels per octave. The velocity will peak within less than an octave of cutoff.

The effect of the variable damping on the cutoff points is not included in
our approximation, due to the assumption that the higher-order loss mechanism
mainly determines the sharp cutoff. According to this model, the best frequency
should shift by nearly an octave (depending on parameters) as the damping
is changed. The cutoff point, however, measured as the frequency where the
response decreases with a particular high slope, changes relatively little. Exper-
imentally, a shift in best frequency of up to 0.75 octave has been observed from
healthy cochleas with active outer hair cells to traumatized cochleas where the
outer hair cells could no longer provide active mechanical undamping [Cody,
1980]. In these experiments, the steep high-frequency side of the response was
unchanged, as we would expect.

SILICON COCHLEA

All auditory processing starts with a cochlea. Silicon auditory processing
must start with a silicon cochlea. The fundamental structure in a cochlea is the
basilar membrane. The silicon basilar membrane is a transmission line with a
velocity of propagation that can be tuned electrically. Output taps, where the
signal can be observed, are located at intervals along the line. We can think about
the taps as crude inner hair cells. Unfortunately, we cannot build a system with
as many taps as living systems have hair cells. Human ears have about 3500; we
will be lucky to have 1000. On the other hand, we can make many delay-line
elements; the delay element we use in this delay line is the second-order section,
described in Chapter 11. We expect this model delay line to be good enough to
duplicate approximately the dynamics of the second-order system of fluid mass
and membrane stiffness, including the active role of the outer hair cells.

Basilar-Membrane Delay Line

Our basilar-membrane model is fabricated with 480 sections in the boustro-
phedonic arrangement illustrated by the 100-section version in Figure 16.3. The
only reason for using this serpentine structure instead of a straight line is that
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FIGURE 16.3 Floorplan of 100-stage cochlea chip, in serpentine arrangement. The
wires that are shown connecting the 7 and Q control terminals of the filter stages are
built using a resistive polysilicon line, which acts as a voltage divider that adjusts the
bias currents in the cascade as an exponential function of distance from the input. The
second-order section used in this composition is shown in Figure 11.1 (p. 180).

there are many sections, each of which is longer than it is high. The chip has a
reasonable aspect ratio with this floorplan. Circuit yields are good enough that
we regularly are able to propagate a signal through the entire 480-stage delay
line on chips from several fabrication runs.

The 7 and @ bias inputs on the second-order sections are connected to
polysilicon lines that run along one edge of the sections. We connect both ends
of each of these resistive polysilicon lines to pads, so that we can set the voltages
from offchip. Due to the subthreshold characteristics of the bias transistors in
the amplifiers, the time constants of the sections are exponentially related to
the voltages on the 7 control line. If we put a different voltage on the two ends
of the 7 line, we get a gradient in voltage along the length of the polysilicon
line. The subthreshold bias transistors in the transconductance amplifiers will
turn this linear gradient in voltage into an exponential gradient in the delay
per section. We can thereby easily make a transmission line where the velocity
of propagation and cutoff frequency are exponential functions of the distance =
along the line. We adjust all the sections to have the same @ value by putting a
similar gradient on the Q control line, with a voltage offset that determines the
ratio of feedback gain to forward gain in each section.
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For a cochlea operating in the range of human hearing, time constants of
about 10~> to 10~2 second are needed. A convenient capacitor size is a fraction
of a picofarad (10712 farad), so the range of transconductance values needed
is between 10~7 and 107! mho. If kT'/(gx) is 40 millivolts, the range of bias
currents will be between 10~% and 1072 amp. This range leaves several orders
of magnitude of leeway from room-temperature thermal leakage currents at the
low end, and from space-charge-limited behavior (transistors operating above
threshold) at the high end, so the circuits are in many ways ideal. The total
current supplied to a cascade of 480 stages is less than a microamp.

Second-Order Sections in Cascade

We can spatially discretize a nonuniform wave medium such as the cochlea by
looking at the outputs of N short sections of length Az; the section outputs are
indexed by n, an integer place designator that corresponds to the x location nAx.
A cascade of second-order sections with transfer functions Hy, Ho, ..., Hp, ...,
Hy can be designed to approximate the response of the wave medium at the
section outputs. In passing from output n — 1 to output n, a propagating (com-
plex) wave will be modified by a factor of Hy,(w), which should match the effect
of the wave medium.

The equivalent transfer function H,(w), a function of place (output num-
ber n) and frequency, is thus directly related to the complex wavenumber k(w, ),
a function of place and frequency. The relation between the cascade of second-
order sections and the wave medium is

Ha(w) = %4 with k evaluated at z =nlAz (16.2)
or
log H,
k(w,z) = %_z(_w) for x=nlAz

Because H and k both can be complex, we can separate the phase and loss
terms using log H = log |H| + jarg H:

log H = jkAz = jk,Az — k;Ax
log gain = log |H| = —k;Az
phase lag = arg H = k, Az

Therefore. if we want to model the action of the cochlea by a cascade of second-
order sections, we should design each section to have a phase lag or delay that
matches k, and a gain or loss that matches k;, all as a function of frequency:

gain = gl

dphase  dk, A
group delay = pdu%e = E:;Ax = Fx (16.3)
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where U is the group velocity; Equation 16.3 implies that the previous definition
of group velocity, dw/dk, is correctly generalized to dw/dk,.. The overall transfer
function of the cascade of second-order sections, from input to output m, which
we call H™, is

m

H™(w) = H

= exp Z log H,, (w)

n=0

m
= expj Z k(w,nAz)Az (16.4)
n=0

In the cochlea, k is nearly real for frequencies significantly below cutoff; that
is, the second-order sections are simply lossless delay stages at low frequencies.
The gains may be slightly greater than unity at middle frequencies, when the
input signal is small and the cochlea is actively undamped; at high frequencies,
however, the gains always approach zero. Near cutoff, a small change in the
value of k; corresponds to a small change in the gain of any one section, but to
a potentially large change in the overall gain of the cascade.

These formulae (from Equation 16.2 through Equation 16.4) provide a way
to translate between a distributed-parameter wave view and a discrete delay-
section view of the cochlea. The discrete-section model will be realistic to the
extent that waves do not reflect back toward the base and that the sections are
small enough that the value of k does not change much within a section. In
our experimental circuits, kK may change appreciably between the rather widely
spaced output taps, so several delay sections are used per tap.

Figure 16.4(a) shows the response of a single second-order section from the
transmission line. The curves were computed from Equation 16.4 for Q values
of 0.7, 0.8, and 0.9; scaled versions of the Q = 0.9 transfer function, from earlier
stages in a cascade, also are shown. For this application, we use @ values of
less than 1.0, which means that the peak of the single-section response is very
broad and has a maximum value just slightly greater than unity for Q greater
than 0.707.

Because the system scales, each second-order section should have a similar
response curve. The time-constant of each section is larger than that of its pre-
decessor by a constant factor eA%/%  so each curve will be shifted along the
log-frequency scale by a constant amount Az/d,. The overall response is the
product of all the individual curves; the log response is the sum of all of the logs,
as shown in Figure 16.4(b). In terms of the normalized log-log response G, the
overall response is simply

logH™ (w) = ZlogG (log— -+ n;ﬂ)

(%
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FIGURE 16.4 (a) Frequency response of a single second-order filter section, for Q
values 0.7, 0.8, and 0.9, including scaled copies (dashed lines) of the Q = Q.9 response
to represent earlier sections in a cascade. (b) Corresponding overall response of a
cascade of 120 stages with a factor of 1.0139 scaling between adjacent stages. The
dashed line between (a) and (b) indicates that the overall response peak occurs at the
frequency for which the final section gain crosses unity. Note the different decibel scale
factors on the ordinates.

Taking the section illustrated in Figure 16.4(a) as the last section before the
output tap and working backward to sections of shorter time constants, we obtain
the overall response in Figure 16.4(b). Each response curve has a maximum gain
slightly larger than unity. There are many sections, and each one is shifted over
from the other by an amount that is small compared with the width of the peak.
Although there is not much gain in each section, the cumulative gain causes a
large peak in the response. This overall-gain peak is termed a pseudoresonance,
and is much broader (less sharply tuned) than is a single resonance of the same
gain.

Figure 16.5 shows the s-plane plot of the poles of an exponentially scaling
cascade of second-order sections with @ = 0.707. The time constant 7 of the final
stage of the cascade determines the smallest wy = 1/7, indicated by the circle
in the figure. For clarity, only six stages per octave (a factor of 1.122), covering
only three octaves, are used for this illustration.
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Figure 11.1 (p. 180).

Because each stage of the delay line has nearly unity gain at DC, we interpret
the propagating signal as a pressure wave in the cochlea, which should propagate
with a roughly constant amplitude in the passive case (the amplitude should be
exactly constant in the short-wave region with zero damping). In the active case,
a significant gain (for example, 10 to 100) can be achieved, measured in terms
of the pressure wave.

We can design output-tap circuits to convert the propagating pressure wave
into a signal analogous to a membrane deflection-velocity wave. Ideally, we would
do this by a spatial differentiation to convert pressure to acceleration, followed
by a time integration to convert to velocity. The combination would be exactly
equivalent to a single time-domain filter, which can be approximated in the
short-wave region by the approximate differentiator 7s/(7s+ 1), with 7 adjusted
to correspond roughly to the 7 of each section; this filter tilts the low side of
the response to 6 decibels per octave, without having much effect on the shape
or sharp cutoff of the pseudoresonance. The most effective such circuit we have
built and tested is the hysteretic differentiator described in Chapter 10. The
results reported in this chapter, however, are based on the second-order delay

line alone.

Transistor Parameter Variation

Our electronic cochlea would be ideal if Figure 16.4 showed the real picture.
As we have noted in Chapter 5, however, MOS transistors are not inherently well
matched. For a given gate voltage, the current in the subthreshold region where
our circuits operate can vary randomly over a range of a factor of about two. In
the response curves of the real second-order sections, there is a dispersion in the
center frequencies of the sections because of this random variation in currents.
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That dispersion would not be too great a problem, but the () values also vary,
because the threshold of the @ control transistor varies randomly and is not well
correlated with the 7 adjustment on the same stage.

If the responses of too many sections fall off without peaking, the collective
response will be depressed at high frequencies, and we will not be able to maintain
a good bandwidth and gain in the transmission line. If we try to increase the
value of @ too much, however, to make up for the depressed response, some of
the sections will start to oscillate. The large-signal stability limit described in
Chapter 11 places an additional constraint on the range of @ values than can be
tolerated in the face of threshold variation. Thus, there is a range of variations
beyond which this scheme will not work. Fortunately, ordinary CMOS processes
are capable of yielding transistors that have currents sufficiently well controlled
to obtain cochlear behavior with no oscillation.

Figure 16.6 illustrates a possible random distribution of pole positions, based
on a uniform distribution of threshold-voltage offsets that would cause currents
and transconductances to vary over a range of a factor of two. The nominal @
value and the 7 scaling factor are set as in the experimental conditions discussed
the next two sections. The bounded distributions allow us to compute that o
(the ratio of feedback transconductance to total forward transconductance in
the second-order section of Chapter 11) will change by a factor of two above and
below nominal, and we can see that for this condition it is not difficult to avoid
the large-signal instability. The effect of the large @ variation on the overall
response of the system is more difficult to estimate.

Frequency Response

The most straightforward behavior of the silicon cochlea that can be com-
pared with theory is the magnitude of the frequency response. The circuit is
set up with a gradient in the 7 such that each section is slower than its prede-
cessor by a factor of 1.0139. With this value, the auditory range is covered in
the 480 sections. The @ control voltage is set so that the peak response is about
five times the DC response, as seen at several different output taps. Experimental
data were taken with a sine wave of 14 millivolts peak-to-peak amplitude applied
to the input. Results for two taps 120 sections apart are shown in Figure 16.7.
The solid points are measured values, and the smooth curves are theoretical pre-
dictions. Each curve is constructed as a product of individual section response
curves as given by Equation 11.4 (p. 181). The value of the DC gain of the ampli-
fiers is determined from the ratio of the response peaks. The value of @ used in
the theory is adjusted until the predicted peak heights agreed with observation.
The resulting @Q value is 0.79. The lower-frequency peak corresponds to a tap
farther from the input by 120 sections than is the higher-frequency peak; the
signal level at the second tap has thus suffered a degradation due to the DC gain
of 120 followers in cascade. The open-circuit amplifier gain inferred from this
observation is 1800, in good agreement with measurements on other amplifiers
of similar design.
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FIGURE 16.6 Plot in the s-plane of the poles of an exponential cascade of second-order
filter sections with random threshold offsets (Q = 0.79 nominal, stage ratio = 1.0139, 120
stages covering about a factor of five in frequency). The threshold offset was modeled as
a uniform distribution of bias current over a factor-of-two range, resulting in « parameter
variation of up to a factor of two above and below nominal (factor-of-four range).

The remarkable agreement between theory and experiment is surprising in
view of known random variations in transistor input offset voltages. We would
expect a variation in @ and 7 values for each section that is much larger than is
the systematic progression between adjacent amplifiers. This variation need not,
however, have a drastic effect on the result. The total response is the product
of the responses of a large number of amplifiers. The product is an associative
operation—it does not depend on the order of the terms. The fact that amplifiers
in a particular physical location do not have precisely the 7 value that we desire
does not matter. Some amplifier somewhere will have that 7 value, and it will
make its contribution as required. It is more surprising that the random variation
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FIGURE 16.7 Log-log frequency response measured at two output taps of an exper-
imental silicon cochlea 120 sections apart. The experimentally measured points (dots)
agree quite well with the theoretical curves (using empirically fitted values of Q = 0.79,
stage ratio = 1.0139, and DC gain = 1800). The DC-gain parameter (or open-loop gain
of the transconductance amplifier) provides a correction that shifts the response at the
later tap downward by (1800/1801)'?° = 0.936 relative to the earlier tap.

of @ values does not affect the result in a more violent way. As of now, we do
not have a satisfactory theory explaining the composite response curve resulting
from many curves of different individual @ values.

Transient Response

The response at one tap of the cochlea to a step input is shown in Figure 16.8.
In part (a), the @ value of the delay line has been adjusted to be just slightly
less than 0.707; the trace shows only a slight resonant overshoot. In part (b),
the @ value has been increased, and more overshoot is evident. In part (c),
the Q value is considerably higher, and the delay line rings for several cycles.
If the Q value were automatically adjusted, as it is in living systems, part (a)
would correspond to the response at high background sound levels, and part (c)
would correspond to a very quiet environment. With the @ value adjustment
corresponding to part (c), we can observe the response at the two taps along the
delay line where the frequency response of Figure 16.7 was measured. The result
is shown in Figure 16.9. These results illustrate the scale-invariance property
that is unique and valuable about this structure: When we adjust the time scale
on the oscilloscope to correspond to the 7 value of the particular section being
observed, we obtain a similar output waveform at every tap. Living systems use
this principle so that the detection machinery does not depend on the position
along the basilar membrane. We will use it for the same purpose.
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FIGURE 16.8 Step response at one tap of the cochlea. In (a), the Q value of the delay
line has been adjusted to be less than maximally flat (about 0.69); the trace shows only
a slight resonant overshoot. In (b), the Q value has been increased to about 0.74, and
more overshoot is evident. In (c), the @ value is considerably higher (about 0.79), and
the delay line “rings" for several cycles.
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FIGURE 16.9 Step responses at two taps separated by 120 delay stages. Note that
the second response (b) has about 10 times as much delay as the first one has (a), and
that it has a slightly faster rise time relative to the delay. Aside from the relation of rise
time to delay, the response at the two taps is similar, with the time scaled by about a
factor of 10, This behavior gives rise to the scale-invariance property of the cochlea.

GAIN CONTROL

The function of the outer-hair-cell arrangement is to provide not just gain,

but also control of the gain, which it does by a factor of about 100 in amplitude
(10,000 in energy). When the signal is small, the outer hair cells are not inhib-
ited and they feed back energy. This AGC system works for sound power levels
within a few decades of the bottom end of our hearing range by making the
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FIGURE 16.10 (a) Mechanical and neural iso-output tuning curves. Based on data

from Robles and his associates [Robles et al., 1986]. The mechanical measurements
(amount of input needed to get 1 millimeter per second basilar-membrane displacement
velocity, or 19-angstrom basilar-membrane displacement amplitude) were made by
measuring doppler-shifted gamma rays (Mossbauer effect) from a small radioactive
source mounted on the cochlear partition. The neural tuning curve was measured by
looking for a specified increase in firing rate of a single fiber in the cochlear nerve.
(b) Iso-output tuning curves for the second-order model described in this chapter,
under three operating conditions. The dashed curves are the response for fixed Q,
independent of input level. The solid curve is the result for a particular nonlinear AGC
scheme that reduces the @ of the cascaded filter stages as the output signal increases,
The similarity in the response area shape and width between the active adaptive model
and the biological system (a) is striking. For this simulation, all filter-stage Q values are
equal, and are computed from a feedback gain « that is a maximum value (0.5) minus
a constant, times the total output of 100 channels covering about an octave in each
direction from the channel being measured. The relation of Q values to overall gains and

overall transfer functions is discussed in the text.

structure slightly more resonant and thereby of much higher gain—by reducing
the damping until it is negative in some regions.

Figure 16.10(a) shows data from a biological cochlea. The sound-pressure
level required to produce a fixed membrane-displacement amplitude and velocity
is plotted as a function of frequency. Also plotted is the input level required to
produce a certain increase in the rate of firing of a single auditory nerve fiber.
The data were obtained by Robles and his associates [Robles et al., 1985], using
the Mossbauer effect in the chinchilla cochlea. Curves such as these are termed
iso-output curves, because the input level is adjusted to produce the same
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output level at each frequency; the region above an iso-output curve is known
as the response area. The curves show reasonable agreement between neural
and mechanical data, implying that the response area is already determined at
the mechanical level. Without the outer hair cells, the sensitivity is at least
30 decibels less, and the curve tips are much broader [Kim, 1984]. The sharpness
of such tuning curves (response widths of only about one-fourth to one-tenth
of the center frequency) often misleads model developers into thinking that the
system is narrowly tuned, when in fact the curves are quite different from transfer
functions. As frequency changes, the input level changes enormously, and the
AGC system causes a change in the opposite direction to keep the output at a
constant level. The response of the cochlea as a linear filter is difficult to infer
from this kind of measurement, but it must be considerably broader than are
the iso-output tuning-curve shapes [Lyon et al., 1986].

This use of controlled mechanical feedback provides an extremely effective
gain-control system. This gain-control system takes effect before the signal is
translated into nerve pulses, just as does the visual gain-control system in the
retina. Nerve pulses are, by their very nature, a horrible medium into which to
translate sound. They are noisy and erratic, and can work over only a limited
dynamic range of firing rates. It is essential to have a first level of AGC before
the signal is turned into nerve pulses, because this approach reduces the noise
associated with the quantization of the signal.

We can model the effect of the outer hair cells as a negative damping. When
the low-order loss term 3 in Equation 16.1 is negative, the system exhibits gain
until, at high enough frequency, the higher-order 7 loss mechanism dominates.
If we were to model such a traveling-wave system with active gain as a time-
invariant linear system, the system would have a fixed gain, independent of the
sound input level. The live cochlea, however, is known to be highly adaptive and
compressive, such that the mechanical gain is much less for loud inputs than for
soft inputs. This nonlinear (but short-term nearly linear) behavior is necessary
for two reasons. First, the mechanism that adds energy must be energy-supply
limited, and therefore the gain cannot extend to arbitrarily high signal levels. Sec-
ond, even at relatively low sound levels, the variation of the gain is needed to com-
press inputs into a usable dynamic range, without causing excessive distortion.

Many researchers who have attempted to model active wave amplification in
the cochlea have met with difficulties, especially when the place dimension was
discretized for numerical solution. De Boer has shown that slight irregularities
in the cochlea can reflect enough energy to make the system break into unstable
oscillations (as in tinnitus) [de Boer, 1983]; models that use discrete sections
and allow waves to propagate in both directions sometimes suffer from the same
problem. By taking advantage of the known normal mode of cochlea operation
in which signals propagate in only one direction, our circuit model avoids the
stability problem, as long as each section is independently stable.

We have not, at the present time, integrated the control system for automat-
ically adjusting the Q values of the second-order sections onto the same silicon
as the basilar-membrane model. We have, however, built a computer simulation
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of such a control system, which we describe later in this section. The results from
this model shed considerable light on the operation of biological cochleas, and are
guiding our design of a silicon cochlea with a completely integrated AGC system.

We have seen that the gain of a delay line composed of second-order sec-
tions is a sensitive function of the @ value of the individual sections. For @ less
than 0.707, the gain of each stage will be less than unity at all frequencies; for
slightly higher @ values, the stage is a simple but reasonable model of an actively
undamped section of the cochlear transmission line, with gain exceeding unity
over a limited bandwidth. By varying the filter’s Q value adaptively in response
to sound, we can cause the delay line to model a range of positive and nega-
tive damping, and can thereby cause large overall gain changes. In our model,
the Q value for 120 sections before a given tap was adjusted downward from
a maximum value of 1.0 as the average output-signal amplitude increased. The
average output-signal amplitude was defined as the average of the amplitudes of
output-signals from 50 sections on either side of the given tap; the model is thus
a coupled AGC system, because a range of output channels can affect the
gain of any particular channel. In a silicon implementation, this average would
be computed by a one-dimensional resistive network, as described in Chapter 7.

Figure 16.10(b) shows iso-output curves for the cochlear model described in
the previous paragraph, under two linear conditions (a passive low-gain condi-
tion, as in a cochlea with dead or damaged outer hair cells, and an active high-
gain condition, as in a hypothetical cochlea with active outer hairs of constant
gain and unlimited energy), and under the condition where the AGC system
acts to adapt the gain between the two linear conditions in response to the out-
put level averaged over nearby channels. The curves show that a simple coupled
gain-control loop can cause a broadly tuned filter to appear to have a much nar-
rower response than does a similar filter without AGC, when observed with an
iso-output criterion; this result is in excellent agreement with the experimental
data on the biological system in Figure 16.10(a).! The model also predicts that
higher signal levels will cause an increase in effective bandwidth and a reduction
in phase shift or delay near the best frequency (but a slightly increased phase lag
below the best frequency), in agreement with physiological observations [Pickles,
1985; Sellick et al., 1982].

SUMMARY

The cochlea is a traveling-wave structure that creates the first-level represen-
tation in the auditory system. It converts time-domain information into spatially
encoded information by spreading out signals in space according to their time

1 Our scale-invariant model produces tuning curves that are similar to those observed
in biological systems in the basal region, but are too sharp in the apical region [Dallos,
1988]. In the real cochlea the frequency-place mapping becomes nearly linear in the apical
region, so waves are amplified over a more limited region, resulting in less AGC effect
and less iso-output sharpness.
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scale. The velocity of propagation along the structure decreases exponentially
with distance, so the spatial pattern generated by a certain time sequence is in-
dependent of the rate at which the sequence is presented. Faster sequences create
output patterns closer to the input of the structure; slower sequences generate
output patterns nearer the output of the structure.

The silicon model of this traveling-wave structure exhibits behaviors that
bear an uncanny resemblance to those of the living system. The effect of variation
in transistor parameters is insignificant in the operation of the system, which is
determined by the collective action of many sections. This model has allowed us
to sharpen our understanding of nature’s solution to the hearing problem. It also
is an effective solution to a difficult engineering problem.
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