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Introduction

Aortic Blood Flow and the Windkessel Model

Within the human circulatory system, the aorta is the largest artery, originating from the heart’s
left ventricle and extending down to the abdomen, where it branches into smaller arteries.

The cardiac cycle is a closed-loop, pulsatile system: the heart pumps blood throughout the
systemic circulation in a manner that resembles a pulse wave (Figure 1).

Figure 1: Cardiac cycle phases. Obtained from: http://www.beltina.org/health-dictionary/

cardiac-cycle-phases-diagram-definition.html

The first phase of the cardiac phase, ventricular diastole happens when the ventricles are
relaxed and allow for the newly oxygenated blood to flow in from the atria. Ventricular diastole
is followed by systole, systole , where the ventricles contract and eject the blood out to the body
through the aorta. Aortic pressure rises when the ventricles contract, pumping the blood into the
aorta, and, at its maximum is termed systolic pressure . At the start of following cardiac cycle,
as the blood begins to flow into the ventricles, the aortic pressure is at its lowest, and it is known
as diastolic pressure .

The Windkessel Model was designed in the late 1800’s by the german physiologist Otto Frank.
He described the heart and the systemic arterial system as a closed hydraulic circuit. In his analogy,
the circuit contained a water pump connected to a chamber, filled with water except for a pocket
of air. As it’s pumped, the water compresses the air, which in turn pushes the water out of the
chamber. This analogy resembles the mechanics of the heart. Windkessel models are commonly
used to used to represent the load undertaken by the heart during the cardiac cycle. It relates
blood pressure and blood flow in the aorta, and characterizes the arterial compliance, peripheral
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Figure 2: Fluid Dynamics and Electrical Circuit Equivalents. Obtained from: http://hyperphysics.

phy-astr.gsu.edu/hbase/electric/watcir2.html

resistance of the valves and the inertia of the blood flow. This is relevant in the context of, for
example: the e↵ects of vasodilator or vasoconstrictor drugs, the development of mechanical hearts
and heart-lung machines.

The Windkessel model takes into consideration the following parameters while modeling the
cardiac cycle:

�Arterial Compliance: refers to the elasticity and extensibility of the major artery during the
cardiac cycle.

�Peripheral Resistance: refers to the flow resistance encountered by the blood as it flows
through the systemic arterial system.

�Inertia: simulates the inertia of the blood as it is cycled through the heart.

The Windkessel Model is analogous to the Poiseuille’s Law for a hydraulic system. It describes
the flow of blood through the arteries as the flow of fluid through pipes. In this report, we focus on
the electrical circuit equivalent, as shown in Figure 2.
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Problem Statement

In this project, we aim to mathematically model the blood flow to the aorta, the relationship between
blood pressure and blood flow in the aorta, the compliance of blood vessels, and, to compute the
analytical and numerical solutions for the same. We will also briefly critique our results and the
robustness of the Windkessel Model for cardiac modeling.

Windkessel Model Description

Model Assumptions

We assume that:

� Cardiac cycle starts at systole.

� The period of the systole is 2/5th of the period of cardiac cycle.

� Arterial Compliance, Peripheral Resistance, and Inertia are modeled as a capacitor, a resistor,
and an inductor respectively.

The basic Windkessel model calculates the exponential pressure curve determined by the systolic
and diastolic phases of the cardiac cycle. As the number of elements in the model increases, a new
physiological factor is accounted for and more accurate the results are when related to the original
curve. Various other criteria such as computational complexity, shape of curve generated etc. must
be considered while deciding on which model to choose. These are approached in the three di↵erent
Windkessel models explained below.

The 2-Element Windkessel Model

The simplest of the Windkessel models demonstrating the hemodynamic state is the 2-Element

Model. During a cardiac cycle, it takes into account the e↵ect of arterial compliance and total
peripheral resistance. In the electrical analog, the arterial compliance (C in cm3/mmHg) is repre-
sented as a capacitor with electric charge storage properties; peripheral resistance of the systemic
arterial system (R in mmHg ⇥ s/cm3) is represented as an energy dissipating resistor.

The flow of blood from the heart (I(t) in cm3/s) is analogous to that of current flowing in the
circuit and the blood pressure in the aorta (P(t) in mmHg) is modeled as a time-varying electric
potential. Figure 4 shows that during systole, there is ejection of blood from the ventricles to the
compliant aortic chamber. The blood stored in peripheral vessels and the elastic recoil of aorta
during diastole are depicted as solid and dashed lines respectively.

The theoretical modeling as seen in the electrical analog (Figure 3) is given as:

I(t) =
P (t)

R
+ C

dP (t)

dt
(1)
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Figure 3: Diagrammatic representation of ventricular ejection of blood and arterial circulation

Figure 4: Electrical Analog of the 2-Element Windkessel Model

The 3-Element Windkessel Model

The 3-Element Windkessel Model simulates the characteristic impedance of the proximal aorta. A
resistor is added in series to account for this resistance to blood flow due to the aortic valve. The
already existing parallel combination of resistor-capacitor represent the total peripheral resistance
and aortic compliance in the 2-element model as discussed before. A hydraulic equivalent of the 3-
element model is shown in Figure 5. Aortic compliance due to pressure variations is seen by allowing
a bottle to undergo volume displacements. The tube geometry represents the characteristic aortic
impedance. Resistance to flow is varied by partial opening and closing of needle valve shown.

Figure 5: A Hydraulic Equivalent of the 3-Element Windkessel Model

The theoretical modeling as seen in the electrical analog (Figure 6) is given as:

⇣
1 +

r

R

⌘
i(t) + CR1

di(t)

dt
=

P (t)

R
+ C

dP (t)

dt
(2)
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Figure 6: Electrical Analog of the 3-Element Windkessel Model

The 4-Element Windkessel Model

This model includes an inductor in the main branch of the circuit as it accounts for the inertia to
blood flow in the hydrodynamic model. The drop in electrical potential across the inductor is given
as L(di(t)/dt). The 4-element model gives a more accurate representation of the blood pressure vs.
cardiac cycle time curve when compared to the two and the three element models. The electrical
analog is shown here (Figure 7):

Figure 7: Electrical Analog of the 4-Element Windkessel Model

Theoretical modeling:

⇣
1 +

r

R

⌘
i(t) +

✓
rC +

L

R

◆
di(t)

dt
+ LC

d2i(t)

dt2
=

P (t)

R
+ C

dP (t)

dt
(3)

Model of the Blood Flow to the Aorta

The flow of blood into the aorta from the ventricle during the cardiac cycle is represented as I(t) in
our model. I(t) is modeled as a sine wave with amplitude I0 during systole and is zero otherwise.
This follows our learning of the cardiac physiology. During diastole, when the ventricles are relaxed,
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there is no blood flow into the aorta, and therefore, I(t) = 0. However with ventricular contraction
during the systole, blood is ejected into the aorta and can be modeled as a sinusoidal wave ,
therefore:

I(t) = I0sin

✓
⇡ ⇤ mod(t, Tc)

Ts

◆
(4)

where t is time in seconds, Tc is the period of the cardiac cycle in seconds, Ts is the period of
systole, in seconds, and mod(t, Tc) represents the remainder of t divided by Tc. Ts is assumed to be
2/5Tc, according to the dynamics of the cardiac cycle.

According to literature, the blood flow in one cardiac cycle is 90 cm3. We use that information
to obtain the constant I0:

90 =

Z Tc

0

I0sin

✓
⇡ ⇤ mod(t, Tc)

Ts

◆
dt

I0 =

Z Tc

0

(1/90)sin

✓
⇡ ⇤ mod(t, Tc)

Ts

◆
dt

I0 = 424.1 mL

Therefore the maximum amplitude of the blood flow during systole is I0 = 424.1 mL
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Simplified Analytical Solution

We solve analytically for the 2-Element Windkessel Model, that was given by:

C
dP (t)

dt
+

P (t)

R
= I(t)

Systolic Phase: Inhomogeneous solution

dP (t)

dt
+

P (t)

CR
= I(t)

Using integrating factor u(t) =
R

1
CRdt = e

t
RC :

dP (t)

dt
e

t
RC + e

t
RC

P (t)

CR
=

I0
C
sin (⇡t/Ts) e

t
RC

Note that
dP (t)

dt
e

t
RC + e

t
RC

P (t)

CR
=

d

dt

⇣
e

t
RCP (t)

⌘

So now we integrate both sides:
Z

d
⇣
e

t
RCP (t)

⌘
=

Z
I0
C
sin (⇡t/Ts) e

t
RC dt

And our solution is:

y(t) = c1e
�t
RC +

�e
t

CRTsI0R(C⇡Rcos( ⇡tTs
)� Tssin(

⇡t
Ts
))

T 2
s + C2⇡2R2

To solve for the constant c1, we consider the initial conditions forP (t) at the start of the systolic
cycle. As each systolic cycle is preceded by a diastolic cycle. At time tss = start of systolic cycle,
P (t) equals the diastolic pressure (Pss). Therefore:

c1 = Pss +
I0TsR

h
C⇡Rcos

⇣
⇡(t�tss)

Ts

⌘
� Tssin

⇣
⇡(t�tss)

Ts

⌘i

T 2
s + C2 ⇤ ⇡2 ⇤R2

e
(t�tss)

CR

Which gives us:

c1 = Pss +
I0TsR [C⇡R]

T 2
s + C2 ⇤ ⇡2 ⇤R2
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Diastolic phase: homogeneous solution

P (t)

R
+ C

dP (t)

dt
= 0

P (t) = ce
�t
RC

To determine the constant c, we solve for the initial condition for P (t) at the start of diastolic cycle.
At time tsd = start of diastolic cycle, P (t) equals the diastolic pressure (Psd). As each diastole is
preceded by a systole, this is the pressure at the end of the systolic cycle. For all our analytical
and numerical analysis, Psd was determined from the solution of the preceding systolic cycle. We
expect this number to be around 120 mmHg. This is because the blood pressure for a healthy
person is around 120mmHg/80mmHg (Systolic/diastolic). Given that we started with 80mmHg
as our diastolic blood pressure, our model should be able to output the systolic blood pressure as
120mmHg. However, it should be noted that the diastolic blood pressure of 80mmHg was supplied
as an initial condition only for the first cycle. For the remaining cycles, the blood pressure at the
end of the preceding diastolic cycle was taken as the initial condition.
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Numerical Validation

To validate our analytical solution and the Windkessel’s model robustness in simulating blood pres-
sure during a cardiac cycle, we simulated a blood flow current and plotted, using MATLAB, the
results for the analytical and computational solutions for blood pressure, P (t).

Figure 8 shows the aortic blood flow as simulated (I(t)), for 5 cardiac cycles, the analytical so-
lution for the blood pressure P (t), and the numerical solution, using an ODE solver in MATLAB
(code in Appendix).

Figure 8: Analytical and Numerical solutions for 2-Element Windkessel Model.

Figure 8 shows the aortic blood pressure for the numerical solution. Note that, as expected,
the blood pressure varies between the range of 80-120mmHg. Figure 9 and Figure 10 shows the
numerical solution for di↵erent initial conditions, for the 2-Element Windkessel and 3-Element
Windkessel Models, respectively. As time progresses, the pressure values reach equilibrium point
and converge to form a single curve. Relating this physiologically, we can infer whatever the
perturbation the heart is subjected to (which reflect as high or low blood pressure), it reaches
steady state value after a period of time.
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Figure 9: 2-Element Windkessel Model with varying initial conditions.

Figure 10: 3-Element Windkessel Model with varying initial conditions.

10 of 15



Model of Aortic Blood Flow Using the Windkessel Model Catanho, Sinha, Vijayan

Conclusion

We were able to model a healthy heart, where the blood pressure is expected to vary between
80mmHg/120mmHg during the cardiac cycle. Also, the model is capable of absorbing the fluctua-
tions in the blood dynamics during the cardiac cycle, as seen in Figure 9 and Figure 10. Specifically,
for the 2-Element WM (Figure 11), it can be observed that our analytical solution matches that of
the numerical solution computed using odesolver in MATLAB. The results for the 2- and 3-Element
match published results. However, we cannot further validate the model without patient data. In-
tuitively, the value of the resistance to flow (modeled in the 3-Element WM as r) is negligible when
compared to the peripheral resistance (R) and hence we observe similar cardiac output for our test
data. Again, our blood flow is modeled as a perfect sine, which is not an ideal representation of the
aortic blood flow in real patients. However, in a real-world scenario, the three Windkessel models
would represent the blood pressure better.

Figure 11: Comparisson of 2-Element and 3-Element Windkessel Models for Analytical and Nu-
merical solutions.
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Appendix: MATLAB code

c l o s e a l l ;
c l e a r a l l ;
Colour=hsv ;

% Def in ing modeling parameters f o r Windkessel Model

% parameters f o r 2 element
R = .95000 ; % systemic p e r i ph e r a l r e s i s t a n c e in (mmHg/cmˆ3/ sec )
C = 1.0666 ; % systemic a r t e r i a l compliance in (cmˆ3/mmHg)

% parameters f o r 3 element
R1= . 0 5 ;
R2 = .9000 ; % systemic p e r i ph e r a l r e s i s t a n c e in (mmHg/cmˆ3/ sec )
C = 1 .0666 ;

%%Asumpltions
Tc= 60/72 ;% 72 beats per second
Ts=(2/5)∗Tc ; % s y s t o l e per iod
cycle=5; % number o f ca rd i a c c y c l e s f o r which WM i s analysed

% Model l ing blood f low to the aorta
syms ti q

I0= solve (90�int ( q ∗ ( s i n ( p i ∗ti/Ts ) ) , ti , 0 , Ts ) , q ) ;
I0=subs ( I0 , ' 3 .14 ' , p i ) ;
sine = @ ( t ) s i n ( p i ∗t/Ts ) ;
I = @ ( t ) I0∗sine ( t ) . ∗ ( t <= Ts ) ; % f o r one cy c l e

f i g u r e (1 )
% Analys i s over ' cyc l e ' number o f ca rd i a c c y c l e s

f o r n=1:cycle
t=(n�1)∗Tc : . 0 1 : n∗Tc ;
% Blood f low f o r each ca rd i a c cy c l e
I = @ ( t ) I0∗sine (t�(n�1)∗Tc ) . ∗ ( t <= (( n�1)∗Tc+Ts ) ) ;
subp lot ( 4 , 1 , 1 )
p l o t (t , I ( t ) , 'LineWidth ' , 2)
hold on

xlim ( [ 0 n∗Tc ] )
ylim ( [ 0 600 ] )
t i t l e ( ' Aort i c Blood Flow Model ' )
y l ab e l ( 'Blood Flow (ml/ s ) ' )
x l ab e l ( ' time ( s ) ' )

%I n i t i a l c ond i t i on s a l l models
i f ( n==1)

P_ss= 80 ;
P_ss2=80;
P_ss3=80;

end

%%Ana ly t i c a l s o l u t i o n

% Ana ly t i c a l s o l u t i o n f o r s i s t o l i c c y c l e
ts=(n�1)∗Tc : . 0 1 : ( n�1)∗Tc+Ts ;
P0= P_ss + I0∗Ts∗R ∗( C∗ pi ∗R ) / ( ( Tsˆ2+Cˆ2∗ pi ˆ2∗R ˆ2) ) ;
P_s= @ ( t ) P0∗exp (�((t�ts (1 ) ) /( R∗C ) ) ) � I0∗Ts∗R ∗( C∗ pi ∗R∗ cos ( p i ∗(t�ts (1 ) ) /Ts )�Ts∗ s i n ( p i ∗(t�ts (1 ) ) / -

Ts ) ) /( Tsˆ2+Cˆ2∗ pi ˆ2∗R ˆ2) ;
P_sd=P_s ( ts ( end ) ) ; % IC f o r the d i a s t o l i c phase
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% Ana ly t i c a l s o l u t i o n f o r d i a s t o l i c c y c l e
td=(n�1)∗Tc+Ts : . 0 1 : n∗Tc ;
P_d= @ ( t ) P_sd∗exp(�(t�td (1 ) ) /( R∗C ) ) ;
P_ss=P_d ( td ( end ) ) ; % IC f o r the s y s t o l i c phase

subplot ( 4 , 1 , 2 )
hold on

p lo t ( ts , P_s ( ts ) , ' r ' , 'LineWidth ' , 2)
p l o t ( td , P_d ( td ) , 'b ' , 'LineWidth ' , 2)
xlim ( [ 0 n∗Tc ] )
ylim ( [ 0 150 ] )
t i t l e ( 'Blood Pressure ( Ana ly t i c a l So lut ion� 2 Element WM) ' )
y l ab e l ( ' Pressure (mmHg) ' )
x l ab e l ( ' time ( s ) ' )
l egend ( ' Sy s t o l i c Pres sure ' , ' D i a s t o l i c Pres sure ' )

%%Numerical So lu t i on f o r 2 Element WM
t=(n�1)∗Tc : . 0 1 : n∗Tc ;
I = @ ( t ) I0∗sine (t�(n�1)∗Tc ) . ∗ ( t <= (( n�1)∗Tc+Ts ) ) ;
Y2= @ (t , y2 ) (�y2 /( R∗C )+I ( t ) /C ) ;
[ t_m2 , P_m2 ] = ode23 ( Y2 , [ ( n�1)∗Tc ; n∗Tc ] , P_ss2 ) ;
P_ss2=P_m2 ( end ) ;
subplot ( 4 , 1 , 3 )
hold on

p lo t ( t_m2 , P_m2 , 'LineWidth ' , 2)
ylim ( [ 0 150 ] )
xlim ( [ 0 cycle∗Tc ] )
t i t l e ( ' Aort i c Blood Pressure ( Numerical Analys i s� 2Element WM) ' )
y l ab e l ( ' Pressure (mmHg) ' )
x l ab e l ( ' time ( s ) ' )

%%Numerical So lu t i on f o r 2 Element WM
Y3= @ (t , y3 ) (�y3 /( R2∗C )+I ( t ) ∗( R2+R1 ) /( R2∗C )+R1 ) ;
[ t_m3 , P_m3 ] = ode23 ( Y3 , [ ( n�1)∗Tc ; n∗Tc ] , P_ss3 ) ;
P_ss3=P_m3 ( end ) ;
subplot ( 4 , 1 , 4 )
p l o t ( t_m3 , P_m3 , 'LineWidth ' , 2)
hold on

ylim ( [ 0 150 ] )
xlim ( [ 0 n∗Tc ] )
t i t l e ( ' Aort i c Blood Pressure ( Numerical 3 Element WM) ' )
y l ab e l ( ' Pressure (mmHg) ' )
x l ab e l ( ' time ( s ) ' )

%%Extract ing the Blood pr e s su r e va lue s f o r a l l model f o r one cy c l e
i f ( n==1)

t2s=ts ;
P2s=P_s ( ts ) ; % Ana ly t i c a l s o l u t i o n f o r Sy s t o l e
t2d=td ;
P2d=P_d ( td ) ; % Ana ly t i c a l s o l u t i o n f o r D ia s t o l e
t2=t_m2 ;
P2=P_m2 ; % Numerical s o l u t i o n f o r 2 element WM
t3=t_m3 ;
P3=P_m3 ; % Numerical s o l u t i o n f o r 3 element WM

end

end

%%Analys i s o f Model with Various I n i t i o n Condi s t ions
% Model l ing Blood f low in to Aorta
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squared = @ ( t ) ( square ( p i ∗(t�((Tc /2) � Ts ) ) /Ts , 100∗ (2∗ Ts � ( Tc /2) ) /Tc ) + 1) /2 ;
I_estimate = @ ( t ) I0∗ squared ( t ) .∗ sine ( t ) ; %% Estimated perod i c Blood f low model

% E f f e c t o f vary ing IC f o r 2 element WM
f i g u r e (3 )
Y= @ (t , y ) (�y /( R∗C )+I_estimate ( t ) /C ) ;
f o r i= 1:10
[ t_m , P_m ] = ode23 (Y , [ 0 ; cycle∗Tc ] , 30+i ∗10) ;
p l o t ( t_m , P_m , ' Color ' , Colour ( i ∗ 5 , : ) )
hold on

ylim ( [ 0 200 ] )
xlim ( [ 0 cycle∗Tc ] )
t i t l e ( ' Aort i c Blood Pressure with vary ing IC� 2 Element Windkessel ' )
y l ab e l ( ' Pressure (mmHg) ' )
x l ab e l ( ' time ( s ) ' )
end

% E f f e c t o f vary ing IC f o r 2 element WM
f i g u r e (5 )
Y= @ (t , y ) (�y /( R2∗C )+I_estimate ( t ) ∗( R2+R1 ) /( R2∗C )+R1 ) ;
f o r i= 1:10
[ t_m , P_m ] = ode23 (Y , [ 0 ; cycle∗Tc ] , 30+i ∗10) ;
p l o t ( t_m , P_m , ' Color ' , Colour ( i ∗ 5 , : ) )
hold on

ylim ( [ 0 200 ] )
xlim ( [ 0 cycle∗Tc ] )
t i t l e ( ' Aort i c Blood Pressure with vary ing IC (3 element ) ' )
y l ab e l ( ' Pressure (mmHg) ' )
x l ab e l ( ' time ( s ) ' )
end

%% Comparison o f WM and an a l y t i c a l So l u t i on s
f i g u r e (4 )
hold on

p lo t ( t2s , P2s , ' r�.∗ ' , t2d , P2d , 'b�o ' , t2 , P2 , 'm�s ' , t3 , P3 , 'g�x ' , 'LineWidth ' , 2 , ' MarkerSize ' , 5 ) ;
l egend ( ' 2 element WM�Ana ly t i c a l ( S y s t o l i c ) ' , ' 2 element WM�Ana ly t i c a l ( D i a s t o l i c ) ' , ' 2 element WM' , -

' 3 element WM' )
ylim ( [ 0 150 ] )
xlim ( [ 0 Tc ] )
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