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1. Background and Introduction 
Cancer is the general term describing a cluster of cells undergoing uncontrolled growth in the body, also 
known as a tumor. Benign tumors are simply physical obstructions that may hinder the functionality of 
the organ, but malignant tumorscan invade surrounding tissues or spread to create a variety of 
cancerous growths in other parts of the body. The mechanism behind how tumors appear or how cells 
suddenly become unregulated is poorly understood, but due to the volatile nature of tumors becoming 
malignant and spreading throughout the body, the field of oncology, especially the study of killing 
cancerous cells is highly investigated. One method of destroying tumors is magnetic hyperthermia. 
 

1.2 Cancer Treatment by Magnetic Hyperthermia 
Tumorous cells die at elevated temperatures, in particular in the range of 42-46°C and since local 
hyperthermia does not require surgery to administer,the therapy is a very efficient and non-invasive 
approach for treating cancer. The therapy is so effective that local hyperthermia is used as a 
supplementary treatment to radiotherapy and chemotherapy.Hyperthermia can be rendered by several 
different heat sources such as external water baths, radiation applicators, or inserted probes. 
Unfortunately, these heat sources do not provide enough control or precision of how or how much 
heatis applied to the target area. 
 
The discovery of generating a localized heat field by exposing magnetic particles to a magnetic 
alternating current field opened the doors to magnetic hyperthermia [1, 2].The study of different energy 
dissipation and effects of electromagnetic fields on different particles has shown the superiority of this 
therapy in providing site-specific heating that minimizes damage to the surrounding tissues [3]. The 
treatment begins with the injection of magnetic nanoparticles, specifically Fe3O4,that are about 10nm in 
radius and coated with cancer-specific biomolecules, into the blood stream near the tumor where the 
nanoparticles attach and accumulate[4, 5]. Once adhered to cancerous cells, the nanoparticles are 
subjected to an alternating magnetic field for 15-60 minutes to gain and maintain a temperature in the 
range of 42-46°C [6].Figure 1 details the process of magnetic hyperthermia. 
 

 
Figure 1: Basic process of magnetic hyperthermia [6]. 

 

1.2.1 Hysteresis Loss Described by the Neel and Brownian Relaxation 

Hysteresis loss describes the phenomenon of heat generation that results from magnetic particles 
reacting to an alternating magnetic field [1, 2].When ferromagnetic materials are subjected to a 
magnetic field, the particles will align themselves according to the magnetic field. In the case of the 
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alternating magnetic field, the particles are constantly realigning themselves to match the changing 
magnetic field and after realignment, the energy used for the alignment is released during the relaxation 
of when the magnetic moment returns to the equilibrium orientation. The released energy dissipates as 
heat where the Neel and Brownian Relaxation models describe the non-rotational and rotational motion 
of particles during their relaxation respectively [2]. The overall behavior and heat generation 
phenomenon is described as hysteresis loss as depicted visually in Figure 2. 
 

 
Figure 2: Hysteresis cycle of a magnetic material where H is the magnetic field amplitude and M is the magnetization of the 

material. The arrows indicate the direction of the magnetization [3]. 

 

1.2.2 Characterization of Nanoparticles by Specific Loss Power (SLP)/Power Density 

Nanoparticles made of different materials exhibit different hysteresis loss profiles and the best approach 
in implementing magnetic hyperthermia would be to determine what material type could generate the 
best temperature range with the least amount of nanoparticles. The parameter, specific loss power 
(SLP), measured by power per mass unit, best determines the amount of heat, related to power, that 
the particles can generate and is dependent the size, distribution, shape, and chemical composition of 
the particles [2]. For our model, we converted the SLP into power density measured by power per 
volume unit that better describes the driving force of the magnetic hyperthermia. 

2. Modeling Strategy 
Although magnetic hyperthermia is an effective cancer therapy, limitations restrict the treatment to 
tumors growing in specific tissues in the body. Limitations include blood perfusion that leads to large 
amount of blood removing heat from the tissue as they circulate the body and the size the nanoparticles 
restricting them from traveling into the smaller capillaries inside the tumor growth. Such restrictions 
prevent magnetic hyperthermia from treating brain tumors where the blood-brain barrier does not 
allow injected nanoparticles to accumulate effectively on the tumorous growths.The high blood 
perfusion nature of the lungs also results in rapid heat dissipation before the nanoparticles can even 
reach the elevated temperature range to kill the cancerous cells. The low heat diffusivity and general 
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difficulty in pinpointing tumors in bone also makes magnetic hyperthermia another poor treatment 
approach. 

2.1 Liver Tumor 
However, in liver tissue, tumorous liver tissue actually exhibit lower blood perfusion than in healthy liver 
tissue thus resulting in a semi-protection for the healthy tissue during local hyperthermia treatment [7]. 
The decrease in blood perfusion in the tumor leads us to define the model of the liver tumor such that 
blood circulation decreases from the peripheral to the center of the tumor. The decrease in blood 
circulation also means a lower concentration of the nanoparticles will be inside the tumor, which leads 
to a lower heat generation by the particles the closer our model is to the center of the tumor. 

3. Mathematical Model 

3.1 Assumptions 
In our mathematical model, we assume the tumor is spherical in shape and that the concentration of 
particles from the peripheral to the center of the tumor is decreasing in a linear relationship. The linear 
correlation of the decreasing particle concentration also applies to the power density. At initial 
conditions before the start of the treatment, we also assume that the tumor to have the same 
temperature as the healthy tissue, which is at body temperature (𝑇0 = 37°𝐶). We also assume that at 
the boundary of the tumor and healthy tissue (𝑟 = 𝑅), the body maintains a constant homeostasis 
environment of the body temperature. In order to provide a solution for our model, we must also 
assume that the temperature of the tumor is and will always be finite. 

3.2 Basic Model 
Before we simulate the real heat diffusion process, we need to determine the heat conductance of the 
specific tumor; hence, we can use our first model to decide the constant. Based on the assumption in 
which we assume a linear power density, the spherical shape of the tumor, and the boundary is 
symmetrical under spherical coordinates, we can write the diffusion equation into the form: 
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In the equation, 1c  is the specific heat of the tumor, 1 is the density of the tumor, and 1k is the heat 

conductance. The former two variables are easily attainable throughexperimental analysis as opposed to 
the heat conductance where we will need to determine a correlation between the value of heat 
conductance with specific heat and density.Theinitial and boundary conditions are shown below: 
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Tosimplify the equation, we transform 𝑇 into a new variable by the following transform: 
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After applying the transform into the original equation, we obtain the followingequation: 
 

2
2

2

1 1

1 w
r

D t r k

  
 

 
 

 
Having transformed the original equation into a new variable, we also transform the conditionsinto 
terms of . Note that we can only transform the boundary condition at 𝑟 = 0 if we had assumed that 
the temperature of the tumor is finite: 
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The homogeneous boundary conditions and the source term in the equationallow us to break the 
solution into the steady and the homogenous term. When the solution reaches the steady state, the 
equation becomes: 
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From those conditions, we can arrive at the steady state solution: 
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We then solve for the homogeneous solution with the remaining portion of theequationwith the same 
conditions as follows: 
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Using the separation of variables again, we arrive at the solution: 
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Combining the steady-state solution with the homogenoussolution and using the reverse transform, we 
can obtain the final solution for 𝑇: 
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As time continues, the temperature across the whole tumor will almost reach steady state at which 

point, we can measure the final temperatureof the tumor (denoted by sT ). With that measurement and 

the measurement of the original temperature of the tumor at 𝑇0 , we can determine the heat 

conductance of specific tumor by using the relationship deduced from the ( , )T r t solution below, which 

can then be used to simulate the realistic heat diffusion from the tumor to its surrounding tissue in a 
more advanced model: 
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3.2.1 Results 

Using the following parameters taken from various literature sources, we can test our basic model with 
the MATLAB code documented in the Appendix. 
 

Parameter Constant Value 

Liver Tissue Heat Conductance 𝑘1 0.5122 
𝑊

𝑚∙𝐾
 

Liver Density 𝜌1 1.0492 
𝑔

𝑚𝐿
 

Tumorous Liver Tissue Specific Heat 𝑐1 3.758 
𝑘𝐽

𝑘𝑔 ∙𝐾
 

Radius of Liver Tumor 𝑅 2.50 c𝑚 

Power of Nanoparticles 𝑃 200 𝑊 

Table 1: Liver tissue and nanoparticle parameters taken from various literature sources [8, 9, 10, 11]. 
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Running the code returns the following plots in Figure 3 and 4. As expected, the temperature reaches its 
peakof about 42.5°C at the center of the tumor(𝑟 = 0) whereas the temperature drops off to body 
temperature at the interface between the tumor and healthy tissue (𝑟 = 𝑅). 
 

 
Figure 3: Surface plot depicting the temperature in terms of time and distance from the center of the tumor. 

 

 
Figure 4: Plot of the temperature over the radius of the tumor. Each individual line is a specific time point. 
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3.3 Advanced Model 
In the second model, we attempt to simulate the realistic heat diffusion from the tumor to its 
surrounding tissue. In the basic model, we assumed that the temperature inside and outside the tumor 
are independent of each other, but in reality, the two temperatures influence each other at the 
boundary interface.In addition, due to the heat induced by the magnetism in the tumor, the 
twodiffusion equations are differentfrom each other as shown: 
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Based on the assumption that the temperature and flux at the boundary are fine and continuous, the 
following conditions are true: 
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In which 1T  and 2T denotes the temperature inside and outside the tumor separately. 

 
Due to the complexity of solving of the equation analytically, we chose to use the numerical method to 
solve the problem. Then we will transform the continuous equation into the difference equation using 
the Euler’s method. 
 

Since the flux is one-sided for 0r  , the numerical approximation for the boundary condition in the 
center is: 
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Using the same process, the second equation can be deducedfrom the boundary condition at the tumor-
healthy tissue edge and results in the following to equations: 
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3.3.1 Results 

Using the following parameters taken from various literature sources, we can test our advanced model 
with the MATLAB code documented in the Appendix. 
 

Parameter Constant Value 

Liver Tissue Heat Conductance 𝑘1 = 𝑘2  0.5122 
𝑊

𝑚∙𝐾
 

Liver Density 𝜌1 = 𝜌2 1.0492 
𝑔

𝑚𝐿
 

Healthy Liver Tissue Specific Heat 𝑐2 3.617 
𝐾𝐽

𝑘𝑔 ∙𝐾
 

Tumorous Liver Tissue Specific Heat 𝑐1 3.758 
𝐾𝐽

𝑘𝑔 ∙𝐾
 

Radius of Liver Tumor 𝑅 2.50 c𝑚 

Power of Nanoparticles 𝑃 6.5𝑊 

Table 2: Liver tissue and nanoparticle parameters taken from various literature sources [8, 9, 10, 11]. 

 

Running the code generates the following plots in Figure 5 and 6. At the boundary, r R ,the 
temperature is higher than predicted in the basic model because the surrounding tissues’ temperature is 
also raised by the hyperthermia treatment in the tumor, which is what occurs in reality. In addition, the 
temperature peaks at a higher value due to the influence of the hyperthermia treatment affecting the 
homeostasis element of the healthy tissue at the boundary conditions. 
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Figure 5: Surface plot depicting the temperature in terms of time and distance from the center of the tumor according to the 

advanced model. 

 
Figure 6: Plot of the temperature over the radius of the tumor according to the advanced model. Each individual line is a 

specific time point. 
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4. Discussion 
We modeled the temperature changes of the cancer treatment, magnetic hyperthermia, by using both a 
basic and advanced model. The heat diffusivity of magnetic hyperthermia in a tumor is essentially the 
partial differential equation (PDE) of heat diffusivity with a heat source in spherical coordinates. The 
heat source is dependent on the power density that is in turn dependent on the type and amount of 
nanoparticles used for the treatment. Although the specific heat and density of the tissue of interest can 
be measured experimentally, the heat conductance is harder to determine. However, solving the basic 
model at steady-state allows us to determine the heat conductance of the specific tumor that we want 
to kill. With that specific heat conductance, we can use the value in the more advance model for 
meaningful results. As we did not have a real liver tumor to measure, we resorted to literature sources 
for the needed parameters. Our basic model depicted a steady-state at roughly t=10 seconds and a peak 
of 42.5°C in the center of the tumor at r=0. 
 
In the advanced model, we created a more accurate interface at the boundary conditions by defining 
the temperature of the tumor’s exterior as a function that can be affected by the tumor’s interior 
temperature during the hyperthermia treatment. Instead of a sudden cutoff to body temperature at the 
boundary, the advanced model displayed a temperature curve that describes how the tumor’s interior 
can also heat up the immediate region of tissue at the tumor’s exterior. Without the assumption of a 
constant homeostasis of body temperature at the boundary results in a higher peak temperature of 
48°C, but still the model can still reachsteady state within 10 seconds. To make this a safer treatment, 
less nanoparticles or nanoparticles of different material will need to be utilized to reach a lower peak 
temperatureand will not cause the external healthy tissue to heat up so high. 
 
In conclusion, magnetic hyperthermia is a very effective method for cancer treatment with a highly 
controllable modus operandi dependent on the material and amount of nanoparticles. The additional 
possibility of coating the nanoparticles in tumor-specific biomolecules adds further precision to the 
method that promotes safety. 

4.1 Future Investigation 
For simplicity, we had assumed the tumor is spherical in shape, but physiologically, tumors rarely grow 
into perfect spheres. To make our model more accurate, we would need to redefine the shape of our 
tumor to that of a more irregular globular shape. In addition, the initial condition may not be as global as 
we assumed where the entire environment is at body temperature. We had also assumed the same heat 
conductance and density for both healthy and tumorous liver tissue when they are two different tissue 
types. In particular, tumorous tissue is rarely uniform and the parameters that govern the diffusivity 
across the tissue can vary in the different dimensions depending on what cancerous cells are growing. 
We had also assume that the distribution of the nanoparticles to be decreasing in a linear fashion, which 
meant that the power density would also be linear. However, given the tumultuous environment inside 
the tumor, the probability of the nanoparticles distributing linearly perfectly through the tumor is 
unlikely. Instead, the power density of the nanoparticles may be higher in one quadrant while maybe 
negligible in another. We had attempted to create a more realistic model in our advanced model by 
including an expression that describes the influence of the internal and external temperatures on each 
other. However, we did not include other factors such as the consumption rate or effects of blood 
perfusion in the healthy tissue. For future analysis, the inclusion of a more accurate tumor shape, 
different initial conditions in different dimensions, varying diffusivity constants in different dimensions, 
the real distribution of nanoparticles, and additional effects on the tumor-healthy cells interface can 
provide a more accurate model of magnetic hyperthermia. 
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Appendix 
closeall; 
clearall; 
clc; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% BENG221   Project                      %% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Part One 
%% Constant 
T0 = 37; 
R  = 2.5; 
P  = 200; 
w  = P/(4/3*pi*R^3); 
k  = 0.642; 
D  = 0.642/3.72; 
T_range = 10; 
dt = 0.1; 
t = 0:dt:T_range; 
dr = 0.05; 
r = 0:dr:R; 
N_term = 15; 
n = 1:N_term; 

 
%% Analytical result 

 
T = T0 + w/k/12.*(R^3 - r'.^3)*ones(1,length(t)) + sinc(r'./R * 

n)*diag(2*w*R^3/pi^2/k.*(-1).^n./n.^2.*(1+2/pi^2.*((-1).^n - 1)./n.^2))... 
    * exp(-D*pi^2/R^2.*n'.^2 * t); 

 
figure,surf(t,r,T); 
xlabel('t/s'); 
ylabel('r/cm'); 
zlabel('Temperature'); 
title('simple model'); 

 
figure, 
holdon; 
forcnt = 1:length(t); 
plot(r,T(:,cnt)); 
end 
holdoff; 
xlabel('r/cm'); 
ylabel('Temperature'); 
title('simple model') 
% xv = -4:0.01:4; 
%yv = -4:0.01:4; 
% t  = 1:1:15; 
% 
% TT = @(r,t) T0 + w/k/12.*(R^3 - r^3)+ sinc(r'./R * 

n)*diag(2*w*R^3/pi^2/k.*(-1).^n./n.^2.*(1+2/pi^2.*((-1).^n - 1)./n.^2))... 
%     * exp(-D*pi^2/R^2.*n'.^2 * t); 
% for t_index = 1:length(t) 
%      
% for x_index = 1:length(xv) 
%     for y_index = 1:length(yv) 
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% 
%     if sqrt(xv(x_index).^2 + yv(y_index).^2) > R 
%      T(y_index,x_index,t_index) = T0; 
%     else 
%     T(y_index,x_index,t_index) = TT(sqrt(xv(x_index).^2 + 

yv(y_index).^2),t(t_index)); 
%     end 
%     end 
% end 
% end 
% [X,Y] = meshgrid(xv,yv); 
% figure('Renderer','zbuffer') 
% F(15) = struct('cdata',[],'colormap',[]); 
%  
% for cnt = 1:15  
% mesh(X,Y,T(:,:,cnt)); 
% axis([-4 4 -4 4 36 43]) 
% F(cnt) = getframe; 
% end 
% movie(F,20)     
 

 
%% Part Two 
%% constant 
cp_1 = 1.0492*3.758; 
cp_2 = 1*3.615; 
k_1  = 0.778; 
k_2  = 0.642; 
P    = 6.5%12.3; 
q_k  = k_2/k_1; 
q    = cp_2/cp_1; 
R    = 2.5 %0.7; 
dr   = R/10; 
D    = 3*R; 
T0   = 37; 
dt   = 0.1; 
T_range  = 10; 
t        = 0:dt:T_range;  
rv_1 = dr:dr:R; 
rv_2 = R+dr:dr:D+dr*length(t); 
rv   = [rv_1 rv_2]; 
T    = T0.*ones(length(rv),length(t)); 
%% function 
% 
% s   = @(z) (q_k - 1).*sin(z) +z .* cos(z); 
% f   = @(z,r,t) z.^(-2).*exp(-k_1/cp_1.*t.*z.^2./R.^2).*((z.*cos(z) - 

sin(z))./(s(z).^2 + q_k*q.*(z.*sin(z)).^2)); 
% k   = @(z,r) sqrt(q_k*q).*z.*(r./R - 1); 
% g_1 = @(z,r) sin(r.* z ./R); 
% g_2 = @(z,r) s(z).* sin(k(z,r)) + sqrt(q_k*q).*z.* sin(z).* cos(k(z,r)); 
% 
% %% integrate 
% delta_T   = zeros(length(t),length(rv));  
% for t_index = 1:length(t) 
%     z = [0.01:0.01:1e5]; 
%     for r_index_1 = 1:length(rv_1); 
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%         intv = 

trapz(z,f(z,rv_1(r_index_1),t(t_index)).*g_1(z,rv_1(r_index_1))); 
%         delta_T(t_index,r_index_1) = P*R^2/3/k_2 * (1 + q_k/2*(1 - 

rv_1(r_index_1)^2)) + 6/pi*q_k^1.5*q^0.5 * R/rv_1(r_index_1)* intv; 
%     end 
%     for  r_index_2 = 1:length(rv_2); 
%         intv = 

trapz(z,f(z,rv_2(r_index_2),t(t_index)).*g_1(z,rv_2(r_index_2))./z); 
%         delta_T(t_index,length(rv_1)+r_index_2) = 

P*R^3/3/k_2/rv_2(r_index_2).*(1+6/pi*q_k * intv); 
%     end 
% end 
% T = T0 + delta_T'; 
% figure,surf(t,rv,T); 

 

 

 

 
cnt  = 1; 
fort_index = 2:length(t); 
T(1,t_index) = T(1,t_index - 1) + k_1/cp_1*dt/dr^2*(T(2,t_index - 1)-

T(1,t_index - 1)) + P/cp_1*dt; 
forr_index = 2:(length(rv_1)-1); 
   T(r_index,t_index) = T(r_index,t_index - 1) + 

k_1/cp_1*dt/dr^2*(T(r_index+1,t_index - 1)-T(r_index,t_index - 1)-(1-

2*dr/rv(r_index))*(T(r_index,t_index - 1)-T(r_index-1,t_index - 1))) + 

P/cp_1*dt; 
end 
   T(length(rv_1),t_index) = (k_1*T(length(rv_1)-1,t_index-1) + 

k_2*T(length(rv_1)+1,t_index-1))./(k_1+k_2); 
forr_index = (1+length(rv_1)):(length(rv)-cnt); 
   T(r_index,t_index) = T(r_index,t_index - 1) + 

k_2/cp_2*dt/dr^2*(T(r_index+1,t_index - 1)-T(r_index,t_index - 1)-(1-

2*dr/rv(r_index))*(T(r_index,t_index - 1)-T(r_index-1,t_index - 1)));    
end 
end 

 

figure,surf(rv(1:(length(rv)-100)),t,T(1:(length(rv)-100),:)'); 
xlabel('r/cm'); 
ylabel('t/s'); 
zlabel('Temperature'); 
title('elaborate model'); 
figure 
holdon 
forcnt = 1:length(t); 
    plot(rv(1:(length(rv)-100)),T(1:(length(rv)-100),cnt)); 
end 
holdoff 
xlabel('r/cm'); 
ylabel('Temperature'); 
title('elaborate model'); 
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