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Abstract 

Rhythmicity is a ubiquitous feature of neural activity that results from an 
interaction between intrinsic currents and extrinsic network properties. The 
most prominent rhythm during sleep appears in extracranial EEG as a large 
amplitude, ~1Hz Slow Oscillation (SO) with ~10,000 cycles per night.  SO 
is known to orchestrate activity across the cortex during slow-wave sleep 
and may be involved in important restorative functions and memory 
consolidation.  Understanding the biophysical basis and spatiotemporal 
dynamics of the oscillation would provide direct insight into fundamental 
aspects of sleep function.  Conflicting evidence from animal and human 
studies with different recording techniques has produced multiple theories 
that have yet to be resolved.  One question that must be answered for this 
research to advance is does the SO occur synchronously or propagate across 
the cortex, and what are the underlying mechanisms governing the 
dynamics?  To address the question of potential generating mechanisms, I 
studied a thalamocortical network model of the SO and developed an 
approach to model specification that facilitates model comparison.  

 

1 Introduct ion 

The Slow Oscillation (SO) is a fundamental cortical operating mode of NREM sleep. SO 
consists of a DOWN state with a strong outward potassium current in layers 2/3, decreased 
broadband gamma activity, and very low firing, alternating at ~1Hz with an UP state when 
most cells fire at near waking levels (see Figure 1).  Rhythmicity can arise in many ways 
including the interaction of activation and inactivation time-constants between different ion 
channels, even in the absence of synaptic input [1], or from the delays in excitatory and 
inhibitory feedback in local networks.  Electrical coupling may play an important role in fast 
rhythms [2].  Within the thalamus, cells of the nucleus reticularis (RE) provide inhibitory 
feedback to thalamocortical (TC) cells [3].  Widespread cholinergic and GABAergic cortical 
projects from the nucleus basalis have been shown in rats to exert an important influence on 
EEG rhythms [4].  In general, evidence suggests rhythms emerge as a result of mutually-
reinforcing interactions between intrinsic currents, local circuits, and distant pacemakers [3].   

It has been claimed, based on referential scalp EEG that sleep SO begins focally and then 
spreads through the cortex at a rate of ~2-7 m/s [5].  SO during NREM sleep travels across 
the cortex in cats [6], and over the scalp in humans, with the originating site related to pre -
sleep experience [5].  This has been taken as evidence for a possibly organized replay of 
daytime experience during sleep for the purposes of memory consolidation.  However, recent 
MEG and intracranial macroelectrode and microelectrode recordings have revealed that the 
dynamics are more complicated in humans.  Isolated DOWN states have been found to 
occur, and DOWN states may be more frequent than UP states [7].  Furthermore, recent 
evidence suggests that special cell populations may act as hubs triggering SO and linking SO 
activity between cortical regions [8]. 



We analyzed MEG and EEG from healthy subjects during natural sleep and intracranial 
electrical recordings from patients with epilepsy undergoing invasive monitoring of seizure 
foci prior to their surgical removal.  The MEG and EEG data displayed both SOs 
propagating from focal origins and others occurring synchronously across large regions of 
cortex.  Preliminary intracranial recordings of cortical population activity have shown 
similar patterns.  These observations have led to the hypothesis that there may be two 
synchronizing mechanisms, one thalamo-cortical (for synchronous SO) and the other 
cortico-cortical (for travelling SO).  In order to better understand potential mechanisms, we 
present here simulation results from a model of a cortico-cortical mechanism ([9], [10], 
[11]), potential thalamo-cortical mechanisms, and propose a modeling and simulation 
strategy for addressing the question of how these generating mechanisms relate to each other 
and for advancing slow oscillation research, in general.  

 

Figure 1.  The slow oscillation in intracellular and EEG recordings [8]. 

 

2 Methods  

 
2 .1  Ex per i me nta l  da ta  a na ly s i s  

We recorded MEG, EEG, and intracranial EEG in humans during slow wave sleep and 
quantified the spatiotemporal activity patterns of all SO cycles.  The instantaneous phase of 
the narrow band-pass filtered signal (.1-2Hz) was used to automatically detect slow 
oscillations during NREM stages 3 and 4.  The correlation between distance and propagation 
delay between all sensor pairs was calculated for each SO.  Correlation coefficients and 
delay maps summarized spatiotemporal characteristics of SO propagation.   

 

2 .2  Tha la mo co rt i ca l  mo de l  o f  the  s lo w o sc i l la t ion  

We simulated a thalamocortical network model [9] capable of generating two common sleep 
rhythms, sleep spindles and slow oscillations [12].  The network model consisted of single-
compartment models of thalamocortical (TC) and thalamic reticular (RE) cells as well as 
two-compartment models of cortical interneurons (IN) and pyramidal (PY) cells.   

The thalamic model (TC, RE) contained ion channels described by Hodgkin-Huxley kinetics: 

𝐶𝑚

𝑑𝑉

𝑑𝑡
= −𝑔𝐿(𝑉 − 𝐸𝐿) − 𝐼𝑖𝑛𝑡 − 𝐼𝑠𝑦𝑛 

where 𝐶𝑚 = 1 µF/cm² is the membrane capacitance, 𝑔𝐿 is the leak conductance, and 𝐸𝐿 is the 

reversal potential.  𝐼𝑖𝑛𝑡 is the sum of intrinsic currents: 𝐼𝑁𝑎(𝑡), 𝐼𝐾 , 𝐼𝑇𝑠, and 𝐼𝐾𝐿  in RE cells and 

𝐼𝑁𝑎(𝑡), 𝐼𝐾 , 𝐼𝑇 , 𝐼𝐾𝐿  𝐼ℎ and 𝐼𝐴 in TC cells (see Figure 2).  Parameter values and expressions for 

the voltage- and calcium-dependent currents are given in the Supplementary section.   𝐼𝑠𝑦𝑛 is 
the sum of synaptic currents (see Figure 3).   

The cortical model (PY, IN) consisted of dendritic and axosomatic compartments containing 
ion channels described by Hodgkin-Huxley kinetics: 

𝐶𝑚

𝑑𝑉𝐷

𝑑𝑡
= −𝑔𝐿(𝑉𝐷 − 𝐸𝐿) − 𝑔(𝑉𝐷 − 𝑉𝑆) − 𝐼𝐷

𝑖𝑛𝑡 − 𝐼𝑠𝑦𝑛 



𝐶𝑚

𝑑𝑉𝑆

𝑑𝑡
= −𝑔𝐿(𝑉𝑆 − 𝐸𝐿) − 𝑔(𝑉𝑆 − 𝑉𝐷) − 𝐼𝑆

𝑖𝑛𝑡 − 𝐼𝑠𝑦𝑛 

where 𝐶𝑚, 𝑔𝐿, and 𝐸𝐿  are the same in both compartments.  𝑉𝐷 and 𝑉𝑆 are the membrane 

potentials of the dendritic and axosomatic compartments, respectively.  𝐼𝐷
𝑖𝑛𝑡 is the sum of 

intrinsic, dendritic currents: 𝐼𝑁𝑎(𝑡), 𝐼𝐾𝐿 , 𝐼𝑁𝑎(𝑝), 𝐼𝐾𝑚, 𝐼𝐾𝐶𝑎, and 𝐼𝐻𝑉𝐴 in PY cells.  𝐼𝑆
𝑖𝑛𝑡 is the sum 

of intrinsic, axosomatic currents: 𝐼𝑁𝑎(𝑡), 𝐼𝐾 , and 𝐼𝑁𝑎(𝑝) in PY cells.  IN cells have the same 

intrinsic currents as PY cells except for the persistent sodium current, 𝐼𝑁𝑎(𝑝).  The strength of 

coupling between the two compartments is determined by 𝑔 =
1

𝜅∗𝑆𝑑𝑒𝑛𝑑
 where 𝑆𝑑𝑒𝑛𝑑 = 𝑆𝑠𝑜𝑚𝑎 ∗

𝜌, 𝜅 = 1E4, and 𝜌 = 165 (PY) or 50 (IN). 

 

 

Figure 2.  Intrinsic currents in thalamocortical SO model. 

 

Cells were connected by excitatory (𝐴𝑀𝑃𝐴, 𝑁𝑀𝐷𝐴) and inhibitory (𝐺𝐴𝐵𝐴𝐴) synapses 
described by first-order activation kinetics and calculated by 

𝐼𝑠𝑦𝑛 = 𝑔𝑠𝑦𝑛[𝑂](𝑉 − 𝐸𝑠𝑦𝑛) 

where 𝑔𝑠𝑦𝑛 is the maximal conductivity, [𝑂](𝑡) is the fraction of open channels, and 𝐸𝑠𝑦𝑛 is 

the reversal potential.  All synapses were capable of experiencing "synaptic fatigue" with 
sustained activation and produced spontaneous, miniature postsynaptic potentials (EPSPs or 
IPSPs).  Synaptic fatigue was modeled by multiplying the conductance by an activity -
dependent scaling parameter, 𝐷𝜖[0,1], representing available synaptic resources: 

𝐼𝑠𝑦𝑛 = 𝐷 ∗ 𝑔𝑠𝑦𝑛[𝑂](𝑉 − 𝐸𝑠𝑦𝑛). 

D decreased with repetitive presynaptic firing according to 𝐷 = 1 − (1 − 𝐷𝑖(1 − 𝑈))𝑒(−
𝑡−𝑡𝑖

𝜏
)
 

where U = 0.07 = fraction of resources used per action potential, 𝜏 = 700ms = time constant 

of the recovery of synaptic resources, 𝐷𝑖  = value of D immediately before the 𝑖𝑡ℎ event at 
time 𝑡𝑖.  Spontaneous PSPs had small amplitudes, the same kinetics as spike-triggered PSPs, 
and occurred at random times modeled by a Poisson process with a mean rate of 𝜇(𝑡) =

log (
𝑡−𝑡0+𝜏

𝜏
)

1

400
 where 𝑡0 = time of last presynaptic spike and 𝜏 = 50.  The network 

connectivity matrix was defined by specifying "fanouts" between cell types.  Each cell was 
assigned a position in 1-D.  A cell of type A at position X connected to all cells of type B 
located on the interval X ± F where F is the fanout from cell type A to cell type B. 

𝐼𝐴 = rapidly inactivating transient  K current 

𝐼𝐴 (TC only)    
 (TC only) 

 (PY only) 

 (PY only) 



 

 

 

Figure 3.  Synaptic connectivity in thalamocortical SO model. [9]. 

 

3 Results  

 

3 .1  Spa t io t e mpo ra l  cha ra c ter i s t i c s  o f  s l eep  SO i n  M EG a nd EE G  

Individual slow oscillations can appear synchronously across broadly distributed channels in 
EEG (Figure 4, B1) and simultaneous MEG (Figure 4, B2) or with a delay between channe ls 
(Figure 4, B3 & B4).  A SO delay map can be constructed by projecting sensor locations 
onto a plane and then interpolating the delay in SO detection time between channels.  The 
EEG delay map for some SO strongly suggests that the SO has a focal origin a nd propagates 
uniformly across the cortex (Figure 4, A3).  The simultaneous MEG delay map often shows a 
similar trend, though the EEG gradient is typically smoother than in the MEG.  A SO 
traveling wave pattern produces a linear relationship between propagation delay and distance 
that is stronger in EEG (Figure 4, D3) than MEG (Figure 4, D4). At other times, the SO is 
synchronous across channels (Figure 4, B1 & B2) with a flat delay map (Figure 4, A1 & A2), 
and no relationship between propagation delay and distance (Figure 4, D1 & D2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.  EEG and MEG evidence that the slow oscillation can be traveling or stationary.  

 



 

3 .2  Ce l lu la r a nd  ne tw o rk mec ha nis ms  o f  SO a c t iv i ty  

Intrinsic currents in thalamic neurons: both RE and TC cells contain fast sodium and fast, 
delayed potassium currents capable of generating Hodgkin-Huxley-type spikes (Figure 5, 
top).  Also present in both cell types is a low-threshold calcium current, 𝐼𝑇 , that flows inward 
upon activation and gives rise to low-threshold calcium-dependent spikes (LTS).  𝐼𝑇  is a 
slowly inactivating current with a calcium concentration-dependent reversal potential that 
progressively hyperpolarizes the cell.  Thus, LTSs triggered by 𝐼𝑇  cause progressive 
hyperpolarization which gives rise to more LTSs.  This dynamic underlies the augmenting 
response [13] in Figure 5 (NaK+iT).  𝐼𝑇-mediated LTSs can trigger 𝐼𝑁𝑎(𝑡) spikes from more 

hyperpolarized states than otherwise possible.  TC cells contain an additional depolarizing 
current 𝐼ℎ that is activated by hyperpolarization.  Consequently, 𝐼ℎ can function as a 
pacemaker current, for instance, giving rise to the periodicity of rhythmic sleep spindles 
[14], and the periodic firing in Figure 5 (lower plots) where the simulation began in a 
hyperpolarized state. 

 

Figure 5. The effect of intrinsic currents on membrane potential dynamics.  Iext = 10µA/cm². 

 

Intrinsic currents in cortical neurons: both the dendritic and axosomatic compartments 
contain very fast Hodgkin-Huxley type sodium and potassium currents, 𝐼𝑁𝑎(𝑡) and 𝐼𝐾 , 

respectively, with a much greater density in the soma.  Both compartments also contain a 

persistent sodium current, 𝐼𝑁𝑎(𝑝).  Slow calcium- and voltage-dependent dendritic currents 

(𝐼𝐾𝑚, 𝐼𝐾𝐶𝑎) produce spike after-hyperpolarizations (AHPs) that underlie the low firing rate in 
Figure 6 (bottom).  On the other hand, the high-voltage dendritic calcium current 𝐼𝐻𝑉𝐴 
contributes to after-depolarizations (ADPs), indirectly, by its modulatory effects on 𝐼𝐾𝑚 and 
𝐼𝐾𝐶𝑎 and, directly, by calcium influx.  The long depolarization phase of the somatic action 

potential in Figure 6 is the result of 𝐼𝑁𝑎(𝑝) and ADPs.  The contribution of AHPs to firing rate 

and ADPs to the depolarization phase depends on the coupling strength, ρ, between 



compartments [15].  Decreasing ρ eliminates the ADP which is most prominent in Figure 8a 
where ρ = 165 in PY cells and 50 in IN cells. 

 

 

Figure 6. Thalamic connections and intrinsic currents in the cortical model.  Iext = 10µA/cm². 

 

Thalamic networks: RE cells project inhibitory signals to neighboring RE cells and TC cells 
at 𝐺𝐴𝐵𝐴𝐴 synapses while TC cells reciprocally excite RE cells at 𝐴𝑀𝑃𝐴 synapses.  In a 
minimal model with one RE cell and one TC cell with steady external stimulation (Figure 6, 
top), a single TC spike triggers a reciprocal RE spike that sufficiently inhibits TC to mask 
the external stimulation and temporarily stop TC firing.  𝐼𝑇  inactivates much more slowly in 
the RE cell and gives rise to spike triplets.  𝐼𝑇  produces a small augmenting response during 
each RE spike triplet.  Without excitation, 𝐼𝑇  inactivation ends RE firing and enables TC to 
become sufficiently depolarized by external stimulation for the sequence to start over.  
𝐴𝑀𝑃𝐴 and 𝐺𝐴𝐵𝐴𝐴 synapses produce spontaneous, miniature EPSPs and IPSPs, respectively.  
The miniature IPSPs may contribute to the variability in the timing of the third spike in each 
triplet.  In RE cells, 𝐼𝑇  leads to long-duration LTSs that result in prolonged periods of 𝐺𝐴𝐵𝐴𝐴 
release onto TC cells.  When the inhibitory RE signal is decreased, the induced TC 
hyperpolarization promotes LTSs in TC cells and sufficiently activates 𝐼ℎ to produce 
subsequent TC spikes.  That is, 𝐼ℎ provides the potential for rhythmic burst generation due to 
the GABA/AMPA currents in RE-TC circuits.  A similar interaction is responsible for 
generating spindle oscillations and may be involved in SO dynamics as well.  

Thalamocortical networks: all connections in the thalamocortical model are given in Figure 
3 and exhibit synaptic fatigue and generate spontaneous PSPs.  Figure 7 displays results 
from simulations of a network with the minimum number of cells and connections that 
include all types of cells and synapses.  Only PY cells are stimulated by a steady external 
current Iext = 10µA/cm².  The effects of synaptic fatigue become evident under these conditions 
as the progressive decrease in RE firing rate reflects progressive depression of the PY-RE 𝐴𝑀𝑃𝐴 
conductance. 

 



 

Figure 7.  Simple thalamocortical networks with excitatory and inhibitory connections.  

 

3 .3  Netw o rk mec ha nis ms  o f  SO pro pa g a t io n  

The thalamocortical models motivating the model presented here were developed to study 
potential mechanisms of traveling SO ([9], [10], [11]).  In this section, we consider 
mechanisms of SO propagation before turning to potential mechanisms of synchronous SO.  
Supplementary Table 1 and Supplementary Table 2 display the cell populations and non-
default parameter values used to produce the results in Figure 8. 

In the original model, the SO begins with an UP state initiated by spontaneous mini -EPSPs 

that activate dendritic 𝐼𝑁𝑎(𝑝) in sufficiently depolarized cells, triggering axosomatic spikes 

that propagate across cortex along excitatory cortico-cortical connections.  Although 
spontaneous mini-EPSPs were present at 𝐴𝑀𝑃𝐴 synapses between PY cells, the number of 
cells and the EPSP amplitudes were too small in this simulation study to produce spikes 
reliably during short simulations.  Consequently, in order to explore propagation patterns, I 
applied a short current pulse large enough to trigger bursting in a single PY neuron, 
mimicking the effect of a spontaneously generated spike.  

Two 3-sec simulations with 45 cells were performed to test the effect of blocking 𝐺𝐴𝐵𝐴𝐴 
conductance between IN and PY cells.  In both cases, large ADPs are produced by the 
dendritic sodium and calcium currents in PY cells with strongly coupled dendritic and 
axosomatic compartments.  Also, in both cases, the UP state propagates across the cortical 
network along cortico-cortical pathways.  In the control case, the propagation is slow with a 
significant delay.  When the 𝐺𝐴𝐵𝐴𝐴 conductance is blocked, the UP state appears nearly 
synchronous.  However, instead of broadly distributed cortical cells being simultaneously 
driven and synchronously activated, the UP state is merely propagating much faster.  
Eliminating inhibition from interneurons has the effect of increasing cortico-cortical 
throughput; it is not a synchronizing mechanism.  These results are consistent with 
experimental findings and simulation results obtained using a different model [10]. 

 



 

Figure 8.  Comparison of (a) thalamocortical network model with (b) published results [10]. 

 

3 .4  Sy nchro no u s  s lo w  o sc i l la t io ns  

The model examined thus far accounts for key aspects of propagating SO but does not 
explain synchronous SO or SO that start with a DOWN state.  In the remainder, we will 
consider potential mechanisms for synchronous SO that begin with a DOWN state. 

The simplest potential generator of a synchronous DOWN state is widespread, synchronous 
inhibition.  Two questions that follow immediately are (1) what causes synchronous 
inhibition, and (2) what drives the UP state after a synchronous DOWN state?  We 
hypothesize that a trigger zone exists from which a relatively focal excitatory process drives 
a more distributed inhibitory process which gives rise to synchronous cortical inhibition.  
Secondly, we hypothesize that the UP state is a secondary phenomenon arising from the 
kinetics of recovery in previously inhibited cortical cells.  This hypothesis was inspired, in 
part, by our observation in MEG data that DOWN states are more common and more 
frequently synchronous than UP states.  Two cells with the same recovery kinetics would 
recover from synchronous inhibition simultaneously, whereas, variation in recovery kinetics 
across a cortical population would result in different spatiotemporal patterns of UP state 
onsets. 

The thalamocortical model can be used to test hypotheses in at least two ways: (1) 
biophysical and network parameters can be varied, and (2) cell types and biophysical 
mechanisms can be added or removed.  The first approach included testing the effects of 
varying TC-IN & IN-PY fanouts and 𝐺𝐴𝐵𝐴𝐴 conductances in order to study the effects of 
varying inhibition in the model.  In all cases, effects were limited to varying propagation 
rate, durations of UP and DOWN states, or silencing the network.   The second approach will 
be addressed in the Discussion below. 

 

4 Discussion 

Electrophysiological experiments, lesion studies and modeling studies have determined that 
interactions between synaptic currents (𝐺𝐴𝐵𝐴𝐴, 𝐴𝑀𝑃𝐴) and intrinsic currents (𝐼ℎ, 𝐼𝑇)  in 
thalamic neurons generate sleep spindles.  Similar studies have demonstrated that excitatory 
interactions between cortical neurons, inhibitory feedback from interneurons, and intrinsic 

cortical currents (𝐼𝑁𝑎(𝑝), 𝐼𝐻𝑉𝐴, 𝐼𝐾𝑚, 𝐼𝐾𝐶𝑎) are capable of generating SO.  However, while the 

SO studies reveal an intrinsic rhythmicity which contributes to the SO, they do not account 



for SO which are synchronous across the cortical surface, nor do they exclude a significant 
role of afferents extrinsic to the cortex in the natural SO. 

Testing hypothesized mechanisms of synchronous SO which begin with a DOWN state using 
modeling and simulation will require implementing many variations on the model presented 
here.  Results from animal and human studies implicate different cells in the generation and 
propagation of SO and different theories often involve different circuits.  In addition, a wide 
range of intrinsic currents and biophysical mechanisms have been proposed to be involved.  
Only a very small subset of the space of potentially correct models has been implemented.  
These observations point to the need for an efficient method of designing, implementing, 
simulating, and comparing alternative models testing likely hypotheses.  For instance, a 
more direct test of a hypothesized region that triggers widespread, synchronous inhibition 
would add a population to the current model and explore the effects of projecting onto TC 
cells exciting interneurons (trigger DOWN state by GABA inhibition) versus projecting onto 
RE cells inhibiting TC cells (trigger DOWN state by removing AMPA excitation).  A 
modification like that is complicated by the fact that candidate trigger zones include 
different cortical layers and different cortical regions, suggesting that multiple cell types and 
associated biophysical mechanisms should be tested and the results compared.  

The NEURON simulation environment [16] facilitates a similar kind of model flexibility at 
the single cell level.  However, the same features which enable modeling almost any 
biophysical mechanism in space and time also make it difficult to scale up to small networks 
of neurons while maintaining the same degree of flexibility.  I implemented the 
thalamocortical SO model in Matlab using a method motivated by NEURON's abstraction 
for handling biophysical mechanisms.  The implementation enables biophysical mechanisms 
to be defined generically and then "inserted" into cells.  Cells are then defined in terms of 
the biophysical mechanisms contained by them and a set of passive parameters.  The prese nt 
version of the thalamocortical simulator processes a spreadsheet used to define cells by 
providing such information and for specifying network connectivity (Supplementary Tables 
1 and 2 were processed by the simulator to produce the above results). 

The next step in developing the simulator for efficient model  construction will be to 
encapsulate network model definition and parameter specification in a program with a 
graphical interface designed to provide maximal flexibility, efficiency, and easy access to 
model parameters and equations (see Supplementary Figure 3).  Also, the current Matlab 
implementation significantly limits the model size that can be simulated in a reasonable 
amount of time, and future modeling efforts will need to utilize a more efficient language 
like C++.  Modeling the neural circuitry underlying SO will benefit from model comparison 
and better guide experimentation and interpretation toward an understanding of the 
biological neural mechanisms. 
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Supp le menta ry  F ig ure s  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary Figure 1: ECoG evidence for SO as a stationary wave. 
 

 

 

 

Supplementary Figure 2.  NEURON model including LFP calculations and cellular morphology. 

 

 

 

 



 

Supplementary Figure 3:  A potential interface for the Thalamocortical Network Simulator. 

 

Program features: 

 Hover over parameter names to display tooltips with the equation(s) containing the parameters (see middle column of the parameter window) 

 Edit the ODEs defining the dynamics of state variables by clicking on the button next to the  text box with their initial values (see mT, hT) 

 Specify initial values using anonymous Matlab functions or constant values (see mT, hT) 

 Specify any values using equations constructed out of other parameters defined for the same mechanism (see Rinf)  

 Automatically store models, organizes results, and manage cluster computing 

  



 

Supplementary Table 1:  Four examples of the spreadsheet format for defining cell 
populations in the Thalamocortical Network Simulator. 

 

Ex) Cell N Intrinsic currents Other 
mechanisms 

Parameters Values Section 

A RE 1 {'iNaK'}  {'stim' 'S_RE' 'g_kl'} [10 1.3E-4 .018]  

B RE 1 {'iNaK' 'iTs'}  {'stim' 'S_RE' 'g_kl'} [10 1.3E-4 .018]  

C RE 1 {'iNaK' 'iTs'}  {'stim' 'S_RE' 'g_kl'} [0 1.3E-4 .018]  

 TC 1 {'iA' 'iNaK' 'iT' 'ih'} {'CaDecay'} {'stim' 'S_TC' 'g_kl'} [10 2.9E-4 .012]  

D RE 1 {'iNaK' 'iTs'}  {'stim' 'S_RE' 'g_kl'} [0 1.3E-4 .018]  

 TC 1 {'iA' 'iNaK' 'iT' 'ih'} {'CaDecay'} {'stim' 'S_TC' 'g_kl'} [10 2.9E-4 .012]  

 PY 1 {'iCa' 'iKCa' 'iKm' 'iKv' 'iNap'  
'iNav'} 

{'CaDecay'} {'stim' 'S_PY' 'g_kl' 'rho'} [10 1.65e-4 15 165] dend 

 PY 1 {'iKv' 'INap' 'iNav'}  {'stim' 'S_PY' 'g_kl' 'rho'} [0 1.65e-4 165] soma 

 IN 1 {'iCa' 'iKCa' 'iKm' 'iKv' 'iNav'} {'CaDecay'} {'stim' 'S_IN' 'g_kl' 'rho'} [0 1.65e-4 .8 50] dend 

 IN 1 {'iKv' 'iNav'}  {'stim' 'S_IN' 'g_kl' 'rho'} [0 1.65e-4 0 50] soma 

Parameters: 'S_X' for scaling conductances, 'rho' for linking compartments, 'stim' for 
external stimulation, 'g_kl' for potassium leak conductance. 

 

Supplementary Table 2: Fanout and synapse specification for n = 5  

where #IN = n, #RE = #TC = 2n and #PY = 4n. 

Ex)  postsynaptic 

 

 postsynaptic 

D Fanout PY IN RE TC Synapse PY IN RE TC 

p
re

sy
n

a
p

ti
c
 PY 5 1 5 5 PY 𝐴𝑀𝑃𝐴, 𝑁𝑀𝐷𝐴 𝐴𝑀𝑃𝐴, 𝑁𝑀𝐷𝐴 𝐴𝑀𝑃𝐴 𝐴𝑀𝑃𝐴 

IN 5 0 0 0 IN 𝐺𝐴𝐵𝐴𝐴    

RE 0 0 5 5 RE   𝐺𝐴𝐵𝐴𝐴 𝐺𝐴𝐵𝐴𝐴 

TC 10 2 5 0 TC 𝐴𝑀𝑃𝐴 𝐴𝑀𝑃𝐴 𝐴𝑀𝑃𝐴  

 
  



Supplementary expressions: 
 

iT 
 

iT = @(V,m,h,cCa) gT*(m^2)*(h)*(V-ET(cCa)) 
 

Rgas    = 831441  % J/(mol*K) 
cels    = 36       % K 
TK      = 27315   % K 
FARADAY = 96489    % C/kmol 
cCa0    = 2        % mM 
gT      = 22      % mS   (TC=2, RE=175  user: RE=23, TC=22) 
Qm      = 5 
Qh      = 3 

 
ET = @(cCa) (1000*(Rgas*(TK+cels))/(2*FARADAY))*log(cCa0/cCa) 
minf = @(V) 1/(1+exp(-(V+52)/74)) 
mtau = @(V) (3+1/(exp((V+27)/10) + exp(-(V+102)/15)))/(Qm^((cels-

24)/10))  

hinf = @(V) 1/(1+exp((V+80)/5)) 
htau = @(V) (85 + 1/(exp((V+48)/4) + exp(-

(V+407)/50)))/(Qh^((cels-24)/10))  

 
ODE{end+1,1} = (minf(V)-mT)/mtau(V)) % d(m)/dt 
ODE{end+1,1} = (hinf(V)-hT)/htau(V) % d(h)/dt 

 

 
iKCa 

 
iKCa = @(V,m) Tad * gKCa * m * (V-EKCa) 
 

gKCa  = 3 
EKCa  = -90 
Ra    = 01 
Rb    = 02 
cels  = 36 
Q     = 23 
caix  = 1 
Tad   = (Q)^((cels-23)/10) 

 
minf = @(cCa) (Ra*cCa) / (Ra*cCa + Rb) 
mtau = @(cCa) (1/(Ra*cCa + Rb))/Tad 

 
ODE{end+1,1} = -(1/mtau(cCa))*(mKCa - minf(cCa)) 

 

 
[Ca]i 

 
FARADAY = 96489    % C/kmol 
depth   = 1E-6     % um, depth of shell 
taur    = 5        % ms, rate of calcium removal 
cainf   = 24e-4   % mM 

 
drive = @(x) max( (-(10/(2*FARADAY))*x/depth), 0) 



 
ODE{end+1,1} = drive(SegID_iT_IT(V,mT,hT,cCa)) + (cainf - cCa) / 

taur % d([Ca]i)/dt 

 
iA 

 
iA = @(V,m,h) gA*m^4*h*(V - EK) 
 

cels  = 36 
EK    = -95 
gA    = 1 % 2 
Tad   = 3^((cels-235)/10) 

 
minf = @(V) 1 / (1+exp(-(V+60)/85)) 
mtau = @(V) (1/(exp((V+3582)/1969)+exp(-(V+7969)/127) ) +37) / 
Tad 
hinf = @(V) 1/(1+exp((V+78)/6)) 
htau = @(V) (V<-63)*(1/((exp((V+4605)/5)+exp(-(V+2384)/3745))) / 
Tad) + (V>=-63)*(19/Tad) 

 
ODE{end+1,1} = -(1/mtau(V))*(mA - minf(V))   % d(mA)/dt 
ODE{end+1,1} = -(1/htau(V))*(hA - hinf(V))   % d(hA)/dt 

 

 
iCa 

 

iCa = @(V,m,h) mphi*gCa*(m^2)*(h)*(V-ECa) 
 

gCa  = 03 
ECa   = 140 
cels  = 36 
ca0   = 2 
Qh    = 23 
Qm    = 23 
mphi  = (Qm)^((cels-23)/10) 
hphi  = (Qh)^((cels-23)/10) 

 
a1 = @(V) 055*(-27-V)/(exp((-27-V)/38)-1) 
b1 = @(V)  94*exp((-75-V)/17)               
minf = @(V) a1(V) / (a1(V) + b1(V)) 
mtau = @(V) (1/(a1(V)+b1(V)))/mphi 
a2 = @(V) 000457*exp((-13-V)/50) 
b2 = @(V) 0065/(exp((-V-15)/28)+1) 
hinf = @(V) a2(V) / (a2(V) + b2(V)) 
htau = @(V) (1/(a2(V)+b2(V)))/hphi 

 
ODE{end+1,1} = -(mCa - minf(V))/mtau(V) % d(mCa)/dt 
ODE{end+1,1} = -(hCa - hinf(V))/htau(V) % d(hCa)/dt 

 

 
ih 

 
ih = @(V,o1,o2) gh*(o1+ginc*o2)*(V-Eh) 
 



k4    = 001 
Eh    = -40 
cels  = 36 
k2    = 0004 
nca   = 4 
nexp  = 1 
taum  = 20 

  
gh    = 02    % 2e-5, mho/cm2 
ginc  = 15    % 2 
cac   = 0015  % 002 
pc    = 01 
tadj  = 3^((cels-36)/10) 

 
hinf = @(V) 1/(1+exp((V+75)/55)) 
taus = @(V) (taum + 1000 / (exp((V+715)/142) + exp(-(V+89)/116) 
))/tadj 
alpha = @(V) hinf(V)/taus(V) 
beta = @(V) (1-hinf(V))/taus(V) 
p10 = @(cCa) 1/(1 + (cac/cCa)^nca) 
o10 = @(V,cCa) 1/(1 + (beta(V)/alpha(V)) + (p10(cCa)/pc)^nexp) 
o20 = @(V,cCa) (p10(cCa)/pc)^nexp * o10(V,cCa) 
k1ca = @(cCa) k2 * (cCa/cac)^nca 
k3p = @(p1) k4 * (p1/pc)^nexp 

 
ODE{end+1,1} = alpha(V)*(1-o1-o2) - beta(V)*o1   % d(o1)/dt 
ODE{end+1,1} = k3p(p1)*o1 - k4*o2                % d(o2)/dt 
ODE{end+1,1} = k1ca(cCa)*(1-p1) - k2*p1          % d(p1)/dt 

 

 
iKm 

 
iKm = @(V,m) Tad*gKm*m*(V-EKm) 
 

EKm   = -90 
gKm   = 01 
cels  = 36 
Q       = 23 
qa    = 9 
tha   = -30 
Ra    = 001 
Rb    = 001 
Tad   = (Q)^((cels-23)/10) 

 
aa = @(V) Ra * (V-tha) / (1 - exp(-(V-tha)/qa)) 
bb = @(V) -Rb * (V-tha) / (1 - exp((V-tha)/qa)) 
minf = @(V) aa(V) / (aa(V) + bb(V)) 
mtau = @(V) (1/(aa(V)+bb(V)))/Tad 

 
ODE{end+1,1} = -(1/mtau(V))*(mKm - minf(V)) % d(m)/dt 

 

 
iK (fast) 

 
iK = @(V,n) (Tad*gKv*n)*(V-EKv) 



 

EKv = -90 
gKv = 200%150 
Q   = 23 
tha = 25 
qa  = 9 
Ra = 02 
Rb = 002 
cels  = 36 
Vtr   = -50 
Vtrk = -50 
Tad = (Q)^((cels-23)/10) 

 
aa = @(V) Ra*(V-tha)/(1-exp(-(V-tha)/qa)) 
bb = @(V) -Rb*(V-tha)/(1-exp((V-tha)/qa)) 
ntau = @(V) (1/(aa(V)+bb(V)))/Tad 
ninf = @(V) aa(V)/(aa(V)+bb(V)) 

 
ODE{end+1,1} = -(nKv-ninf(V))/ntau(V) % d(n)/dt 

 

 
iNa (fast) 

 
INa = @(V,m,h) (mphi*gNa*m^3*h)*(V-ENa) 
 

Shift = -10 
Qm  = 23 
Qh = 23 
tha = -35 
qa = 9 
Ra = 182 
Rb = 124 
thi1 = -50 
thi2 = -75 
qi2  = 5 
thinf = -65 
qinf = 62 
Rg = 0091 
Rd = 024 
cels  = 36 
gNa = 3000 
mphi = (Qm)^((cels-23)/10) 
hphi = (Qh)^((cels-23)/10) 
ENa = 50 
gNa = 100 

 

trap0 = @(V,th,a,q) ((V/th)>1E-6)*(a*(V-th)/(1-exp(-(V-th)/q))) + 
((V/th)<=1E-6)*(a*q) 
mtau = @(V) (1/(trap0(V+Shift,tha,Ra,qa) + trap0(-V-Shift,-
tha,Rb,qa)))/mphi 
minf = @(V) trap0(V+Shift,tha,Ra,qa) / (trap0(V+Shift,tha,Ra,qa) 
+ trap0(-V-Shift,-tha,Rb,qa)) 
htau = @(V) (1/(trap0(V+Shift,thi1,Rd,qi2) + trap0(-V-Shift,-
thi2,Rg,qi2)))/mphi 
hinf = @(V) 1/(1+exp(((V+Shift)-thinf)/qinf)) 



 
ODE{end+1,1} = -(mNav-minf(V))/mtau(V) % d(m)/dt 

ODE{end+1,1} = -(hNav-hinf(V))/htau(V) % d(h)/dt 

 

 
iNaK 

 
iNa = @(V,m,h) gNa*(m^3)*(h)*(V-ENa) 
iK = @(V,n)   gK*(n^4)*(V-EK) 
 

EK = -95 
ENa = 50 
gK  = 10 
gNa = 100 
Vtr   = -50 
Vtk  = -50 
cels  = 36 
phi   = 3^((cels-36)/10) 

 
alpha1 = @(V) 32*(13-(V-Vtr))/(exp((13-(V-Vtr))/4)-1) 
beta1 = @(V) 28*((V-Vtr)-40)/(exp(((V-Vtr)-40)/5)-1) 
mtau = @(V) 1/(alpha1(V)+beta1(V))/phi 
minf = @(V) alpha1(V)/(alpha1(V)+beta1(V)) 
alpha2 = @(V) 128*exp((17-(V-Vtr))/18) 
beta2 = @(V) 4/(exp((40-(V-Vtr))/5)+1) 
htau = @(V) 1/(alpha2(V)+beta2(V))/phi 
hinf = @(V) alpha2(V)/(alpha2(V)+beta2(V)) 
alpha3 = @(V) 032*(15-(V-Vtk))/(exp((15-(V-Vtk))/5)-1) 
beta3 = @(V) 5*exp((10-(V-Vtk))/40) 
ntau = @(V) 1/(alpha3(V)+beta3(V))/phi 
ninf = @(V) alpha3(V)/(alpha3(V)+beta3(V)) 

 
ODE{end+1,1} = -(mHH-minf(V))/mtau(V) % d(m)/dt 
ODE{end+1,1} = -(hHH-hinf(V))/htau(V) % d(h)/dt 
ODE{end+1,1} = -(nHH-ninf(V))/ntau(V) % d(n)/dt 

 

 
iNa(p) 

 
iNap = @(V,m) gNap * m * (V-ENa) 
 

gNap  = 2 
Tet   = -42 
Sig   = 5 
fNap  = 02 
cels  = 36 
Q10   = 27 
mphi  = (Q10)^((cels-22)/10) 
mtau  = 8 / mphi 
ENa   = 50 

 
minf = @(V) fNap / (1 + exp(-(V-Tet)/Sig)) 

 
ODE{end+1,1} = -(mNap-minf(V))/mtau   % d(m)/dt 


