
Emulation of Ion Channel Dynamics in CMOS VLSI

Bassel Hanafi
Electrical & Computer Engineering Dept.

University of California, San Diego
La Jolla, CA 92093

bhanafi@ucsd.edu

Yousr Abdelmaksoud
Electrical & Computer Engineering Dept.

University of California, San Diego
La Jolla, CA 92093

yabdelma@ucsd.edu

Abstract

In this paper a novel VLSI implementation is proposed to emulate ion channels
gating dynamics of neurons. The technique is demonstrated by implementing
K+ ion channels of a Morris-Lecar (ML) neuron model. The circuit emulates the
opening and closing of 256 individual ion channels and is implemented in 0.18µm
CMOS technology. Simulation results indicate that the circuit consumes 2.7µA
from a 0.8V supply, and has an area estimate of 150× 150µm2.

1 Introduction

The fundamental computing unit of a brain is the neuron. Owing to extensive structure it has com-
plex computing capabitities. In contrast, the fundamental computing unit of a microprocessor is
a transistor, which is capable of extensive computing as well, but only at much larger power con-
sumptions. Since neuron computing is orders of magnitude more power effeccient than transistor
computing, there has always been a strong motivation to persue VLSI circuits that can both capture
neuron dynamics accuratley and remain area effecient.

Previous VLSI neuron implementations reported in literature are numerous and range from those
based on a simple integrate-and-fire model [1], to complex full Hodgkin-Huxley model [2], pass-
ing by the simplified two dimensional Izhikevich model [3]. But non of these models was con-
cerned with modeling the openeing and closing dynamics of individual neuron channels, since gat-
ing variables were treated as analog continuous time variables. A more realistic representation is
to model channel conductances with quantized discrete time variables controlled with the corre-
sponding opening and closing rates α(Vm) and β(Vm) . In this paper an effecient digital circuit
implementation is presented to capture the quantized stochastic nature of ion channels opening and
closing in a neuron.

The paper is organized as follows, in section 2, concepts of the proposed emulation architecture
are explained. Section 3 discusses in more details the circuit implementation of the neuron model.
Simulation results are presented in section 4. And, finally, the conclusion and future work are
included in section 5.

2 Morris-Lecar Model and Gate Channel Dynamics

In this section a brief introduction to the ML model dynamics and equations is provided. Next, the
emulation architecture proposed in this work is explained, and system level simulation results based
on behavioral models are presented.

1

2.1 Morris-Lecar model

The ML model [4] is a simplified reduced neuron model. The model was originally employed
to model the barnacle giant muscle fiber with Ca+2 activation (excitation) and K+ inactivation
(recovery). A suitable and intuitive circuit model for channel conductances in ML neuron is shown
in figure 1. If the Ca+2 activation is assumed to be infinitley fast (instantaneous), the model can
be further simplified into a two-dimensional model, and the system equations are found to be as
follows:

Cm
dVm
dt

= (Iext − IK − ICa − IL)

IK = gK .w.(Vm − EK)
ICa = gCa.m∞.(Vm − ECa)
IL = gL.(Vm − EL)
dw

dt
= α.(1− w)− β.w

=
w∞ − w
τ∞

(1)

where m∞, w∞ and τ∞ are all functions of the membrane voltage Vm and have the form:

w∞ =
α

α+ β
= 0.5 · (1 + tanh(Vm/30))

τ∞ =
1

α+ β
=

5
cosh(Vm/60)

[msec]

m∞ = 0.5 · (1 + tanh(
1 + Vm

15
)) (2)

It should be noted that based on the above equations, α(Vm) and β(Vm) have exponential depen-
dence on Vm.

Figure 1: Morris-Lecar conductance based model

2.2 Gate Channel Dynamics

To understand how this model can capture neuron firing, external DC current is assumed to charge
the membrane capacitance, and membrane potential starts ramping up. When it reaches a certain
firing threshold, the fast activation Ca+2 channels open and the membrane voltage spikes to a peak
value, after some delay the slow inactivation K+ channels open and the membrane potential drops
slowly, until most of the Ca+2 channels close and the membrane potential hits a minima. Then the
external current starts charging the membrane capaciance again, and the same process is repeated.

2

2.3 Proposed Emulation Method

Now, consider the K+ channel of the ML model discussed above with only one gating mechanism.
Thus, only one gating variable n is required. The rates α(Vm) and β(Vm) are the average opening
and closing state transition rates respectively, and w is the fraction of the total gates that are open.

Consider further that there is a finite number of such gates (i.e., M -gates), such that when w = 1 all
M gates open and when w = 0 all M gates oclosed. From equation 1, w = 1 corresponds to a total
K+ channel conductance of gK . Consequently, for a K+ channel composed of M gates, channel
conductance can be modeled as M switched conductances with a conductance of gK

M each. This is
better depicted in figure 2

Figure 2: Switched conductance implementation of the gated K+ conductance

Now, let n be the number, rather than the fraction, of open gates, i.e., n = M means that all
gates are open. Clearly, n can be implemented as an M-thermometer code binary number. Modeling
gated conductance this waydirectly implements the multiplication term gK .w because for n switches
activated, the net K+ conductance becomes gK . nM , where, n

M is the fraction of open gates i.e., w.

To be able to fully model theK+ channel, the rate differential equation in 1 needs to be implemented.
To express the equation in terms of n, the equation can be rewritten as:

dn

dt
= α · (M − n)− β · n (3)

Since the first and second terms in [3] represent the transition rate from closed to open channels and
from open to closed channels respectively, it is best to implement them with circuits that produce
an event at a controlled rate (gate transition rates), and then integrate the number of events to give
the exact number of open/closed gates. These circuits by definition are voltage/current controlled
oscillators, and the integrator is a simple digital counter. Hence equation [3] can be rwritten as

∆n ≈ (
1
Tα
− 1
Tβ

)∆t

n(t) = no + floor(fαt)− floor(fβt) (4)

where fα = 1
Tα

= α.(M − n), and fβ = 1
Tβ

= β.n.

Shown in figure 3 is the block diagram for the full system implementation. It is broken down into
the following sub-blocks

• A voltage controlled oscillator (VCO) called the β oscillator (V COβ) has an analog control
signal Vm and a digital control signal n. The VCO output frequency is given by fβ =
β(Vm).n.

• Another VCO called the α osciilator (V COα) has an analog control signal Vm and digital
control signal M − n. This VCO output frequency is given by fα = α(Vm).(M − n).

3

• An asynchronous Up/Down binary counter that operates as follows, a rising edge at the
Up control increments the counter by 1, a falling edge at the Dn control decrements the
counter by 1. The counter output saturates when it attempts to exceed M or go below 0.
• A binary-to-thermometer decoder to convert the counter output into a thermometer code to

control the channel conductance.

Note that M − n is implemented as n̄ or the one’s complement of n. As explained earlier, the
combination of the VCO’s and the counter yields at the counter output the number of open gates,
and hence implements the rate equation [3].

Figure 3: System level block diagram

2.4 A Simple Test Case

To verify the concept, behavioral models were built for the system in figure 3 using VerilogA and
simulated with CADENCE R©. The model paramters used for simulations are:

Cm = 1µF/cm2

ECa = 100mV, gCa = 1.1mS/cm2

EK = −70mV, gK = 2mS/cm2

EL = −50mV, gL = 0.5mS/cm2

Iext = 35µA/cm2

M = 256 gates (5)

For simplicity, the membrane area was supposed to be 1 cm2. SinceM = 256, theK+ conductance
is split into 256 switched conductances each of value 7.8125mS (128kΩ). Also, for the sake of
comparison the same set of equations were solved using MATLAB R©. Shown in figure 4 is the
membrane voltage prediceted by both MATLAB and CADENCE.

It is clear that both results match,and thus verify the concept. Also, shown in figure 5 is the instanta-
neousK+ conductance as a function of time exhibiting the quantized nature of channel conductance.

3 Circuit Implementation

In this work, the K+ channel dynamics only is implemented in circuits, whereas, the rest of the
model remains behavioral. The circuits were designed on a 0.18µm CMOS process. Although, the
nominal supply voltage for this process is 1.8 V, the circuits were designed to operate from a 0.8

4

Figure 4: Behavioral system simulation using CADENCE and continuous solution using
MATLAB

Figure 5: Zoomed version of the instantaneous net K+ conductance gK n
M

V supply to be able to reduce the circuit power consumption drastically. This is feasable because
the circuit maximum operating frequency (max[fα, fβ]) is in the order of 100kHz which is much
lower than the transistor cutoff frequency for this technology.

The implemented circuits are V COα, V COβ , and the Counter/Decoder circuit. All circuits were
designed to be ultra-low power, and hence used transistor channel lengths that were many time larger
than the minimum transistor channel length. Also, since the membrane potential swings between
positive and negative values, while the lowest available potential for a single ended implementation
is zero, the circuits were designed to operate centered around a DC shift of 350mV .

3.1 The Oscillators

For V COβ , an oscillator is required that has a frequency decreasing exponentially with an analog
control variable Vm and increaing linearly with a digital control variable n. This can be done by

5

building a current controlled oscillator whose frequency depends linearly on a control current IC ,
then generate IC such that it has both an exponential dependence on Vm, and a linear dependence
on n.

A practical realization for IC is the output of a switched current source DAC whose input is a digital
word n and whose reference current Iexp is an exponential function in Vm, such that IC = n× Iexp.
Iexp is implemented using a sub-threshold PMOS transistor whose gate is tied to Vm. This results
in a current that falls exponentially with Vm. In general this current is mirrored to M −1 (M=256 in
this case) current sources to build the current DAC. The current of the M − 1 sources is then added
form IC . The circuit for generating IC is shown in figure 6. Note that due to the limitations on the
maximum channel length of the device, the PMOS device generating Iexp is implemented as two
PMOS devices in series. Also, the DAC is implemented with 256 switched current sources instead
of 255 such that when n = 0 the IC 6= 0 to avoid turning the oscillator off, and since its just a single
LSB shift it will not affect the operation significantly.

Figure 6: Schematic of the IDAC generation circuit for the V COβ

The low power current controlled oscillator is implemented as a Schmitt-Trigger based relaxation
oscillator explained as follows:

• The oscillator is based on a schmitt-trigger that has an upper threshold VH above which the
output is Low, and a lower threshold VL below which the output is High, hence it has a
hysteresis voltage VHY S = VH − VL.

• The output of the schmitt-trigger is used to control two current sources IUP and IDOWN

to charge or discharge the capacitor CV respectively.
• When the schmitt trigger output is High, the capacitor CV charges linearly from the IUP

current source, and when the output is Low, CV discharges linearly from the IDOWN

current source.
• The current sources are chosen such that IUP = IDOWN = IC , and the capacitor voltage

is fed back to be the input of the schmitt trigger.
• At steady-state, the capacitor voltage will have a trianglular waveform swinging between
VL to VH with a slope IC /CV , and falling from VH to VL with slope of -IC /CV .

As a result, the oscillator frequency is given by the relation:

fβ =
IC

2 · VHY S · CV
(6)

The current controlled oscillator and its circuit details are shown in both figures 7 and 8.

V COα is implemented in a similar fashion to V COβ , except now the oscillator frequency needs
to have an exponentially increasing dependence on an analog control variable Vm. Thus, the same
oscillator is used with the following modifications:

6

Figure 7: Schematic of current controlled oscillator

Figure 8: Circuit details of the current controlled oscillator

• An NMOS transistor is used to generate Iexp rather than a PMOS transistor.

• The digital control word is now n̄ instead of n.

Hence, the only changes are in the current generation circuitry as shown in figure 9.

Figure 9: Schematic of the IDAC generation circuit for the V COα

3.2 The Counter/Decoder Implementation

Since a binary code is not needed anywhere in the implementation, it was found more efficient to
build a counter that counts in thermometer code directly rather than implementing a separate binary

7

counter and a binary-to-thermometer decoder. This counter is found to be nothing more than an M-
stage bidirectional shift register. Shown in figure 10 is a pictorial representation of a bidirectional
shift register. The register content is updated at every positive edge occuring at the Clk input. At a
positive Clk edge the register samples the control signal applied to the Up/D̄n input. If it is high,
the register shifts its content by a single bit to the right (counts up), if it is low it shifts its content by
a single bit to the left (counts down). This implementation has a number of advantages:

• It saves power by combining both the counter and decoder circuitry into a single circuit.

• It provides n and n̄ automatically, since registers readily provide the output and its comple-
ment.

• It automatically saturates the counter if it tries to exceed M-1 or go below 0

But a number of challenges still exist for this implementation. First, it is required to detect positive
edges occuring from both V COα and V COβ then combine them into a single output to update the
shift register on either a cout up or a count down operation. Second, at a positive Clk edge the
correct count direction needs to be sampled at the Up/Dn control. Shown in figure 11 is a circuit
implemented to perform these two tasks. A clock combiner is a simple circuit that results in a very
narrow pulse occuring at its output for every rising edge occuring at any of its two inputs. The D-FF,
on the other hand, makes sure to issue a high signal to the Up/Dn control every time a rising edge
occurs at V COβ to perform a count up and is reset after a small delay. The delay elements are
implemented to ensure accurate timing relations between different controls signals.

Figure 10: Bidirectional shift register operation

Figure 11: Control signals conditioning for the shift register

8

4 Simulation Results

4.1 VCO Simulations

Transistor sizing provided in the previous section was obtained after a number of iterations to fit fα
and fβ to physical values. The schmitt trigger used was previously reported in [5] and is shown in
figure 8. The simulated voltage transfer characteristics is shown in figure 12 indicating that VHY S
is approximately 500mV .

Figure 12: Schmitt trigger simulation

The DAC reference currents Iexp for V COα and V COβ are shown in figure 13 for Vm ranging from
310 to 390 mV. Also, the DAC output current IDAC for both oscillators is shown in figure 14 for
Vm = 350mV . Note that the mirroring ratio from IDAC to IC is 1/10 i.e., IC = 0.1IDAC .

Figure 13: Simulation of Iexp

The internal waveforms of V COβ are shown in figure 15 for n = 0 and Vm = 350mV .

9

Figure 14: Simulation of IDAC

Figure 15: Internal waveforms of V COβ at n = 0 and Vm = 350mV

Notice that the capacitor voltage is no longer a triangle waveform because the capacitor CV is im-
plemented with a non-linearNMOS capacitor to save area. The capacitance of an NMOS transistor
increases with applied transistor voltage, and this explains why the waveform slope is fast near the
bottom of the wave, and slows down as the voltage increases. This of course impacts the linearity of
the oscillator, but not critical to the circuit functionality.

Also, the analog control voltage Vm is swept and the frequencies fα and fβ are recorded for n = 0
in the case of V COβ and for n̄ = 0 in the case of V COα (i.e., fα = α(Vm) and fβ = β(Vm)).
The simulated α and β functions are plotted against the original functions obtained from equation
2 and are shown in figure 16. Also, an equivalent w∞ and τ∞ are plotted against the original ML
functions as shwon in figure 17.

10

Figure 16: The synthesized α(Vm) and β(Vm) vs the original ones

Figure 17: Equivalent w∞ and τ∞ of the synthesized α and β vs the original ones

4.2 System Simulations

Simulating the full circuit implementation of the system required a lot of simulation time and power,
and it was decided to replace the counter by its behavioral model to reduce simulation time. At the
mean time, the counter circuit was simulated separately assuming a worst case input frequency
(obtained from system simulations) to verify its functionality and determine its power consumption.
As was previously shown, the synthesized w∞ and τ∞ follow the same behavior of their original
counterparts but are slightly different. This is attributed to the fact that a ML model is sensitive to
its parameters, and the parameters had to be slightly modified to attain neuron firing.

11

Cm = 1µF/cm2

ECa = 70mV, gCa = 1.1mS/cm2

EK = −70mV, gK = 2mS/cm2

EL = −50mV, gL = 0.5mS/cm2

Iext = 50µA/cm2

M = 256 gates (7)

The system was simulated with CADENCE, while, w∞ and τ∞ were extracted from continuous
system simulations on MATLAB. Both results are compared in figure 18. The difference in results
are mainly attributed to VCO non-linearities due to the non-linear capacitor CV and other circuit
non-linearities.

Finaly, a performance summary for the circuit is shown in table 1.

Figure 18: System simulation with the circuits of the VCO’s vs continuous simulation on
MATLAB

5 Conclusion and Future Work

In this paper a new technique for emulating gate channel dynamics on silicon was presented. Circuit
implementations required for this method were explained and verified using circuit level simulation
results. The implementation was based on a 0.18µm CMOS technology and consumes only 2.7µA
from 0.8V supply, and thus, is power efficient. The total area estimate is about 150µm2.

Proposals for extending the results of this work include,

1. Can implement the same rate equation with a randomizer circuit(e.g., a ∆Σ modulator has
a digital output whose average corresponds to the analog input voltage.

2. Figure out ways to further reduce the system power dissipation. Specially for implementa-
tions with larger M count, or those that need to implement the Ca2+ channel as well.

3. Programmable α and β exponential rate functions.

4. Extending this technique to emulate channels with more than one gating variable and/or
higher powers of gating variables (e.g. Na+ and K+ channels in a Hudgen-Huxley model
have fourth order gating mechanisms).

12

Table 1: Performance Summary

Technology 0.18µm CMOS

Supply 0.8V

VCO current (both) 0.7µA

Counter current (worst case) 2µA

Total power consumption 2.16µW

Area estimate 150× 150µm2

Appendix 1: VerilogA models

Behavioral VCO

//
//

‘include "constants.vams"
‘include "disciplines.vams"

module vco_ideal_differential(Vtune,Vout_p,Vout_n);
parameter real fmin=16e9;
//parameter real fsim=16e9;
parameter real ko=1e9;
parameter real amp=3.3;
parameter real fc=1e6; // Flicker noise corner
parameter real Qf=10; // Resonator Quality factor
parameter real nf=100; // Noise factor
parameter real voffs=0;

input Vtune;
output Vout_p,Vout_n;
electrical Vtune,Vout_p,Vout_n;
voltage vn,voc,vos;

real phase,npr,fo;

analog begin

fo=fmin+ko*V(Vtune);

//use if need phase noise
// >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
npr=fo/(2*Qf*amp);
npr=(npr*npr);
npr=2*nf*npr*‘P_K*$temperature;
// <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

phase = 2*‘M_PI*idtmod(fo,0,1,-0.5);

13

V(vos)<+amp*sin(phase);
V(voc)<+amp*cos(phase);

// use if need phase noise
// >>>>>>>>>>>>>>>>>>>>>>>>>>>>>
V(vn)<+flicker_noise(npr,2,"noise_leeson");
V(vn)<+flicker_noise(npr*fc,3,"noise_flick");
// <<<<<<<<<<<<<<<<<<<<<<<<<<<<<

V(Vout_p)<+voffs+V(vos)+V(voc)*V(vn);
V(Vout_n)<+voffs-V(vos)-V(voc)*V(vn);

$bound_step(0.1/fo);
end

endmodule

//
//

Behavioral Up/Down Counter

//
//

‘include "constants.vams"
‘include "disciplines.vams"

module logic_UD_cntr(vclku,vclkd,vq);
input vclku,vclkd;
output vq;
electrical vclku,vclkd,vq;

parameter real vtrans=0.5;
parameter real tdelay=50p;
parameter real trise=50p;
parameter real tfall=50p;
parameter integer nbit=8 from [1:inf];

real q,qmx;

analog begin

@(initial_step)
begin
q = 0.0;
qmx = pow(2,nbit);
end;

@(cross (V(vclku)-vtrans,+1)) q=q+1;
@(cross (V(vclkd)-vtrans,+1)) q=q-1;

if (q>=qmx)
q=qmx;

if (q<=0.0)
q=0.0;

14

V(vq)<+ transition(q,tdelay,trise,tfall);

end

endmodule

//
//

Behavioral ADC

//
//

‘include "constants.vams"
‘include "disciplines.vams"

module logic_ADC(vin,vout,voutb);

parameter real fullscale = 256;
parameter real vhigh = 1.2;
parameter real vthresh = vhigh/2;

input vin;
output [0:7] vout;
output [0:7] voutb;
electrical vin;
electrical [0:7] vout;
electrical [0:7] voutb;

real sample, midpoint;
integer i;
integer result[0:7];

analog begin

sample = V(vin);
midpoint =fullscale/2;

for (i=7;i>=0;i=i-1) begin

if (sample >= midpoint) begin
result[i]=vhigh;
sample=sample-midpoint;
end else begin
result[i]=0;
end
sample = 2*sample;

end

V(vout[0]) <+ transition(result[0],1e-6,1e-6,1e-6);
V(vout[1]) <+ transition(result[1],1e-6,1e-6,1e-6);
V(vout[2]) <+ transition(result[2],1e-6,1e-6,1e-6);
V(vout[3]) <+ transition(result[3],1e-6,1e-6,1e-6);
V(vout[4]) <+ transition(result[4],1e-6,1e-6,1e-6);

15

V(vout[5]) <+ transition(result[5],1e-6,1e-6,1e-6);
V(vout[6]) <+ transition(result[6],1e-6,1e-6,1e-6);
V(vout[7]) <+ transition(result[7],1e-6,1e-6,1e-6);

V(voutb[0]) <+ transition((vhigh - result[0]),1e-6,1e-6,1e-6);
V(voutb[1]) <+ transition((vhigh - result[1]),1e-6,1e-6,1e-6);
V(voutb[2]) <+ transition((vhigh - result[2]),1e-6,1e-6,1e-6);
V(voutb[3]) <+ transition((vhigh - result[3]),1e-6,1e-6,1e-6);
V(voutb[4]) <+ transition((vhigh - result[4]),1e-6,1e-6,1e-6);
V(voutb[5]) <+ transition((vhigh - result[5]),1e-6,1e-6,1e-6);
V(voutb[6]) <+ transition((vhigh - result[6]),1e-6,1e-6,1e-6);
V(voutb[7]) <+ transition((vhigh - result[7]),1e-6,1e-6,1e-6);

end

endmodule

//
//

Behavioral Binary-2-Thermometer

//
//

‘include "constants.vams"
‘include "disciplines.vams"

module logic_bin2therm_8bit(vin,vo);
input [0:7] vin;
output [0:255] vo;
electrical [0:7] vin;
electrical [0:255] vo;

parameter real vhigh = 1.0;
parameter real vlow = 0.0;
parameter real vtrans = 0.5;
parameter real tdelay=50p;
parameter real trise=50p;
parameter real tfall=50p;

integer ix,in,iz;
real vip[0:7];
real vx[0:255];
//electrical vq2;

analog begin

vip[0]=V(vin[0]) > vtrans;
vip[1]=V(vin[1]) > vtrans;
vip[2]=V(vin[2]) > vtrans;
vip[3]=V(vin[3]) > vtrans;
vip[4]=V(vin[4]) > vtrans;
vip[5]=V(vin[5]) > vtrans;
vip[6]=V(vin[6]) > vtrans;
vip[7]=V(vin[7]) > vtrans;

16

ix = vip[0] + 2*vip[1] + 4*vip[2] + 8*vip[3] + 16*vip[4]
+ 32*vip[5] + 64*vip[6] + 128*vip[7];

if (ix >= 255)
ix = 255;

if (ix <= 0)
ix = 0;

for (in=0;in<ix;in=in+1)
vx[in] = vhigh;

for (iz=255; iz>=ix; iz=iz-1)
vx[iz] = vlow;

V(vo[0]) <+ transition(vx[0],tdelay,trise,tfall);
V(vo[1]) <+ transition(vx[1],tdelay,trise,tfall);
V(vo[2]) <+ transition(vx[2],tdelay,trise,tfall);
V(vo[3]) <+ transition(vx[3],tdelay,trise,tfall);
V(vo[4]) <+ transition(vx[4],tdelay,trise,tfall);
V(vo[5]) <+ transition(vx[5],tdelay,trise,tfall);
V(vo[6]) <+ transition(vx[6],tdelay,trise,tfall);
V(vo[7]) <+ transition(vx[7],tdelay,trise,tfall);
V(vo[8]) <+ transition(vx[8],tdelay,trise,tfall);
V(vo[9]) <+ transition(vx[9],tdelay,trise,tfall);
V(vo[10]) <+ transition(vx[10],tdelay,trise,tfall);

// CAREFUL !!!!!!!!!!!!!!!!!!!!!!!!!!!!
// 242 lines were removed from the code
// CAREFUL !!!!!!!!!!!!!!!!!!!!!!!!!!!!

V(vo[253]) <+ transition(vx[253],tdelay,trise,tfall);
V(vo[254]) <+ transition(vx[254],tdelay,trise,tfall);
V(vo[255]) <+ transition(vx[255],tdelay,trise,tfall);

///

end

endmodule

//
//

Behavioral analog multiplier

//
//

‘include "constants.vams"
‘include "disciplines.vams"

module analog_mixer(vi1, vi2, vout);

input vi1, vi2; electrical vi1, vi2;
output vout; electrical vout;

parameter real gain=1;

17

real vx, vy, vob;

analog begin

vx = V(vi1);

vy = V(vi2);

V(vout) <+ gain * vx * vy;

end

endmodule

//
//

Behavioral frequency meter (used to measure frequency in simulation

//
//

‘include "constants.vams"
‘include "disciplines.vams"

module freq_mtr(vinp,vinn,v_fout);
electrical vinp,vinn, v_fout;
parameter real vthr=0;
parameter real scale=1;

integer armed,arm1;
real t0,t1,t2;
real fout;

analog begin
@(initial_step)
t0=1p;

t1=t0;

t0=last_crossing(V(vinp)-V(vinn)-vthr,1);

@ (cross (V(vinp)-V(vinn)-vthr,1))

fout = 1/(t0-t1);

V(v_fout) <+ fout/scale;
end
endmodule

//
//

18

References

[1] Mead, C.A. “Analog VLSI and Neural Systems,” (1989), Addison-Wesley.

[2] Yu, T. & Cauwenberghs, G. “Analog VLSI Neuromorphic Network with Programmable Membrane Channel
Kinetics,” Proc. IEEE Int. Symp. Circuits and Systems, Taipei Taiwan, (2009).

[3] Kyung, M., Weiss, E., Rangan, V. & Cauwenberghs, G. “Analog VLSI Simple Model Neuron with Wide
Ranging Complex Dynamics,” Proc. Joint Symp. on Neural Computation, Los Angeles, CA, (2009).

[4] Morris, C. & Lecar, H. “Voltage oscillations in the barnacle giant muscle fiber,” Biophys. J. 35, (1981),
193-213.

[5] Rabaey J., Chandrakasan A., & Nikolic B. “Digital Integrated Circuits,” (2003), Prentice-Hall.

19

