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Abstract  
The project aims to explore two fractal models (by Lowen and Liebovitch) 
of ion channel kinetics, and how this affects spike train patterns. The 
project also intends to extend the Liebovitch model and explore how fractal 
dimension affects potassium ion channel conductance profiles, and the 
behavior and rate of action potentials. 

 

1  I n t r o d u c t i o n  
 
Fractal patterns have been used to model many different aspects of our natural world, from 
coastlines, to mountains, to neuromorphology, all of which deal with fractal behavior as applied to 
geometry. Fractal behavior can also be imparted to dynamical systems, particularly neural spike 
train patterns. Experimental evidence has indicated that neurons along the auditory pathway, 
demonstrate a fractal firing pattern, where the term fractal is used to signify that the fluctuations of 
spiking rate appear self similar over various integration time periods, as shown in Figure 1 [9]. 
 

 
 

Figure 1: a) A fractal fluctuation rate. Fluctuations don’t change in amplitude, even as the 
rate is taken over longer time periods. 

b) Non-fractal fluctuation rate. Fluctuations decline in amplitude and smooth out as the 
firing rate is taken over longer time periods. 

 
In considering possible biophysical origins of this fractal behavior of auditory nerve spiking trains, 
one possibility that has been suggested relates to fractal kinetics of neuronal ion channels. 
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Leibovitch gives the interpretation of fractal kinetics as one way to model memory into ion 
channels [3]-[5].  
 
Hodgkin and Huxley’s original model makes use of constant rate kinetics and , that are 
functions of membrane voltage only. This effectively models the ion channels as a memory-less 
Poisson processes, where ion channel switching behavior between a few finite states is 
independent of how long the channel protein has been in a certain state. This fits the understanding 
of protein dynamics at the time.  
 
However, research has shown us that ion channel proteins, made of hundreds or even thousands of 
amino acids, are incredibly complicated structures, and have many different conformational states 
(analogous to microstates in thermodynamics and statistical mechanics). Given our current 
understanding of ion channel proteins, it seems unlikely that the rates at which an ion channel 
changes between its thousands of conformational states, don’t depend at all on how long the 
channels have been in those states. If fact, there is already evidence that at least some ion channels 
exhibit memory [6].  
 
In this project I look at two models of fractal kinetics. My first goal was to be able to understand 
and implement the first model, a Markov state model developed by Lowen et al., and verify their 
claim that the resulting spiking behavior demonstrates a characteristic fractal behavior of self-
similar fluctuations over time, hence drawing a tentative causal link between ion channel kinetics 
and resulting spiking patterns [6]. 
 
The second goal was to implement a second model of fractal behavior in ion channel kinetics (by 
Liebovitch, based on a power law self similar function) [3]-[5], and explore how ion channel 
conductance profiles are affected by a very important model parameter, known as the fractal 
dimension.  
 
And lastly, my goal was to extend the Liebovitch model of fractal ion channel kinetics, to a full 
model able to recreate membrane voltage action potential sequences. I wanted to explore whether 
the spiking pattern demonstrated self-similar fluctuations over time, and also explore the effects of 
fractal dimension, on the spike train behavior. 
 
2  F r a c t a l  M o d e l  b y  L o w e n ,  e t  a l .  
 
2 . 1  T h e o r y  
 
The first model I looked at, developed by Lowen, Liebovitch, and White, is based on extended 
state Markov theory. The classical equations of the original Hodgkin Huxley model result from  
a reduction of multi-state Markov models (Figure 2 a,b) into a single two state model with opening 
rate , and closing rate  [6]. 
 

a)  
       

b) c)   
Figure 2: a) Markov model for n, the gating variable for potassium. 

b) Markov model for m, and h, the gating variables for sodium. 
c) The extended Markov model for potassium, with self similar kinetic rates. 

 



 Bhattacharya  3 

The model by Lowen, et al., imparts fractal behavior onto only the recovery variable, which in this 
case, is the gating variable for potassium, n. In order to better approximate the fact that the 
potassium channel protein has a large number of conformations (states), Lowen’s model consists 
of an eleven state Markov process, shown in Fig 2, c. The new rates at which the states change are 
given by  and . Each state’s rates differ from the previous state’s rates by a scaling factor 
k, which can be treated as some positive constant. This imparts self-similar behavior (with respect 
to time) into the model. Finding a tractable solution to this model was done by extending and 
approximating the number of closed states (  to ) as infinite, while  remains the only open 
state. Renormalization theory and comparison with the average closed and open times calculated 
for the original Hodgkin and Huxley model, yielded rates , , in terms of the original 
and  rates [6].  

  (1) 

 
Figure 3 shows the new  and  rates, in comparison with the original and  rates, for 
the n gating variable controlling potassium.  
 

 
Figure 3: The behavior of ,  , over voltage interval (-20:120 mV), in comparison to the 

behavior of and . 
 
In order to later study the fractal behavior of fluctuations in spiking rate, I realized that I needed to 
have a stochastic element in my computational model; instead of using the deterministic modeling 
method as done during the class homework assignments, I decided to build a stochastic model 
using a brute force algorithm that stepped through time and used Euler’s integration method to 
calculate potassium gating variable dynamics: 

       (2) 

In order to implement randomness, this algorithm kept track of the state of every potassium ion 
channel, and at every time step, a random number was compared to rates of closing and opening, 
for every single channel. While this is computationally inefficient, and the Gillispie method 
implements stochastics in a more efficient manner, the Gillispie method also assumes that the ion 
channels are memory-less [2]. Since this is not true for a memory based fractal model, the brute 
force algorithm was more accurate way to implement a stochastic fractal model.   
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2 . 2  R e s u l t s  
 
 Figure 4 shows the stochastic results of the Lowen et al. model, against the original HH 
model implemented previously in class. 

 
 
Figure 4: The membrane voltage profile of the fractal model, compared to the original membrane 

voltage profile given the classical HH set of equations.  
 

Figure 4 shows that while the amplitude and general shape of action potentials remains the same 
under the new model, the rate of spiking has decreased drastically, for the same input current 
given to the original model. In addition, the fractal model introduces increased fluctuations in 
between the action potentials, and also during some of the action potentials. 
 
I had originally intended to verify that the Lowen model resulted in action potentials fluctuation 
patterns that demonstrated fractal behavior (as in Fig. 1). However, to get enough variation in 
fluctuations, simulations need to be taken over very long time lengths. Lowen et al. simulated their 
model over thousands of action potentials. However, since my stochastic model depends on a 
brute-force algorithm, simulation time for even four thousand milliseconds (only a few hundred 
action potentials in this case) was too long, and yielded little variation in spike rate. Therefore, it 
was difficult to show whether the amplitude of fluctuations changed when integrated over 
different time periods. 
 
3  L i e b o v i t c h  M o d e l  f o r  F r a c t a l  I o n  C h a n n e l  
K i n e t i c s  
 
3 . 1  T h e o r y  
 
The model described in Section 2, by Lowen et al., was a good starting off point to demonstrate 
that action potentials could be modeled with fractal behavior, and gave a better understanding of 
how a protein’s conformation states can be modeled by Markov states. However, Liebovitch, who 
also worked on the model in Section 2, had written earlier papers about ion channel kinetics where 
the rate functions were derived directly from a self-similar functional form. Since this model 
involved a very important parameter in any description of fractals- the dimension- I wanted to 
implement this model to explore how fractal dimension affected the ion channel kinetics. 
 
Since this model by Liebovitch had only been applied to observe closed time histograms and 
distribution functions of rate constants, I wanted to expand the model to explore how the 
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dimensional parameter affected the ion channel conductance profiles, and membrane voltage 
profiles (in essence, the spiking rate patterns).  
 
Liebovitch’s model describes the concept of memory in a much more intuitive manner. The model 
is derived beginning from a statistically self-similar function 
 

     (3) 

 
where k, a, and A are constants, and D is the fractal dimension. If we model the channel as a two 
state channel with and opening and closing rate, we can write 
 

    (4) 

 
where ko is the opening rate, kc is the closing rate, and P(t) is the probability that a channel remains 
closed over time t  [3]-[5].  
 
Here it is easy to see how the rate functions incorporate memory. By plotting the rate functions 
against time (Fig. 5) we can see that as time increases, rate at which the protein switches states 
decreases, as well as the probability of leaving the state. This incorporates memory, since the 
channel protein must remember how long it has been in a certain state (conformation).  

 
Figure 5: Rate functions (for various values of fractal dimension D) in form of equation (4), 

plotted against time that a protein has been in its current state.  
 

The plot in Fig. 5 also shows how changing D, the fractal dimension, affects the rate function. The 
fractal dimension can be intuitively thought of as a measure of self-similarity as we look at an 
object at finer and finer scales. For example, a classical application of fractals in the past has been 
to study coastlines. It is easy to imagine that as we zoom in on a coastline, it grows in length, 
because of all the details in geography that we can now observe. The fractal dimension is a 
measure of this growth in length (for the west coast of Britain, D = 1.2). If an object were 
geometrically straight, then it would not increase in length or yield any new information no matter 
how many times we zoomed in on it. Here the value of D = 1 (no increase in length), and this 
matches our concept of a straight line being a one-dimensional object [4].  
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In Fig. 5 as we vary D, we can see that as D approaches 1, the rate function approaches a constant 
function across all time, which is essentially a memory-less Poisson process that can modeled with 
a two-state Markov process approximation (such as the original HH model). This demonstrates 
that Liebovitch’s fractal ion channel kinetic model is a generalized model, of which the two-state 
Markov process is a special case (D = 1) [5].  
 
3 . 2  E x t e n d i n g  t h e  L i e b o v i t c h  M o d e l  
 
The Liebovitch model has mostly been used to compute closed time histograms, to verify the 
fractal behavior of self-similarity over various time intervals [3]-[5]. I wanted to look at using this 
model to observe potassium channel conductances, varying both N, the number of channels, and 
D, the fractal dimension.  
 
The computation of channel conductances involved building on the stochastic model I used for 
Part 2. Instead of comparing a random number against the and  rates, I compared it against 
the probability of a channel staying in a state as long as it has (which is dependent on ko and kc ). If 
the probability of changing states is high enough, the channel flipped from open conformation to 
closed, or vice versa. To do this I kept track of which channels were in which state, and how long 
they had been in that state. At each time step, the total potassium conductance was calculated 
based on how many of the channels were open at the time, and the individual potassium 
conductance was normalized such that if all potassium channels were open, the total conductance 
would be .                                                                                                                                                                                                                      
          
Since the Liebovitch model had not been used to generate action potentials, my next goal was to 
extend the model so as to include oscillating voltage dynamics. In order to apply this model to 
voltage profiles, I found that I had to change Aopen , Aclose , so that instead of being constants, they 
were functions of voltage, so that the rate constants themselves were functions of both time a 
channel had been in a certain state, and the membrane voltage at the time of observation. 
 
The functions Aopen(V), Aclose(V) were made such that as membrane voltage increases, the 
probability P(t,V) of staying open is higher, than for lower voltages, since we want potassium 
current to increase during action potentials, in order to hyperpolarize the membrane potential and 
bring it back towards the resting potential. At the same time, ko(t,V), and kc(t,V) had to follow their 
original trends where the rate decreased as t increased (for D >1).  
 
Aopen(V), Aclose(V) were eventually created to hold the following functional forms: 

    (5) 

where  are parameter constants than can be adjusted such that the new rates ko(t,V), and 
kc(t,V), yield rates on the same order of magnitude as the original HH rates and . I then 
incorporated these functions into the stochastic model, by substituting them into the probability 
function P(t,V). The number of potassium channels that were open or closed was determined 
stochastically as before. This determined the gating variable for potassium, n, at each timestep, 
and the rest of the gating variables, current equations, and membrane voltage equation, for the HH 
model were determined as usual.  
 
3 . 3  R e s u l t s  
 
3 . 3 . 1  C o n d u c t a n c e  P r o f i l e s  
 
Figure 6 shows the calculated potassium conductance profiles, for various values of N, and D, 
with no external current. 
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a) D = 0      b) D = 0.5 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c) D = 1.0     d) D = 1.5 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e) D = 2      f) D = 2.5 

 
Figure 6: Conductance profiles as N and D vary. In all cases, N was increased from N = 5 to N = 

1000. D was varied as indicated.   
 
As Figure 6 demonstrates, as N increases, all the conductance profiles approach a continuous, 
deterministic-type profile. However, changing D doesn’t seem to alter much, other than the 
conductance profile for N = 1000, which shows more minute fluctuations. This seems to suggest 
that as D increases, there is more small-scale randomization (fluctuations) that become apparent 
for simulations with large N.  
 
Looking at equations (4), it is easy to see that D should ideally be greater than 1, in order for the 
rate functions to have a negative slope over time. If the model were to assume that the longer a 
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channel was in a particular configuration, the more likely and faster it leaves that configuration, it 
would makes sense to lower D below 1. However, looking at the simulation results in Figure 6, D 
< 1 doesn’t seem to yield any irregular behavior in fluctuation patterns.  
 
On the other hand, the results for D = 2.5 are interesting and differ from the other results. Here, the 
conductance approahes an equilibrium value, with almost no fluctuations. Based on equations (4), 
D should ideally remain less than 2, in order for the probability function P(t) to have a limit as t 
approaches 0. While mathematically this constrains D, the results for D = 2.5 also make 
physiological sense. If we look back at Figure 5, as D grows to higher and higher values, the slope 
of the rate constant increases so the longer a channel stays in a state, the rate decreases very quicly 
and to very low values, so that it becomes statistically very improbable that the channel will 
switch states. In Fig. 6f, potassium channels switched to the open state, and then remained stuck in 
that state since as time increased, the probability of switching back to the closed state, was very 
low. 
 
3 . 3 . 2  E f f e c t s  o n  S p i k i n g  P r o f i l e  a n d  S p i k i n g  R a t e  
 
Figure 7a demonstrates the effect of varying Dopen, on the membrane potential profile. Raising 
Dopen from 1.1 to 1.8 without changing any other parameters, including external current (kept at Iext 
= 60 µA/cm2) , drastically raises the rate of spiking. In other words, raising Dopen makes the model 
more sensitive to external stimulus. Intuitively we can think of Dopen as a measure of random 
fluctuations. Raising this parameter increases the magnitude of random fluctuations between the 
action potentials high enough so many of these random fluctuations turn into actual action 
potentials. 

 
a) b) 

 
c) 

Figure 7: a) The effect of fractal dimension Dopen, on action potentials, with Iext = 60 µA/cm2 
b) the effect of Dopen, on the opening rate ko. 

c) The effect of fractal dimension Dopen, on action potentials, with Iext = 0 µA/cm2 
 
Figure 7b shows the effect of varying Dopen , on the opening rate ko . For  Dopen  = 1.1, the slope is 
approximately zero, which is the same as a constant rate Poisson process. This makes sense since 
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Dopen is so close to 1, which was mentioned before as a special case of the generalized fractal 
model. Figure 7b is verification that the extended model is yielding the expected ion channel 
kinetic results. 
 
Figure 7c shows a particular case of varing Dopen, when there is no external current input into the 
model. Raising Dopen to 1.9 has a very strong effect on the amplitude of the random fluctuations, so 
that spontaneous action potentials are generated. The shape of these action potentials is slightly 
irregular, due to the fluctuations occurring even during the action potential. However, these 
spontaneous action potentials simplify demonstrate that at high Dopen values, the model is 
extremely sensitive to even the smallest of fluctuations; anything can trigger an action potential. 
 
Figure 8 shows the effect of varying Dclose, associated with the closing rate function, on voltage 
profile. As expected, Dclose has the opposite randomizing effect as Dopen. Raising Dclose makes the 
model much less sensitive to external stimulus, and lowers fluctuations so that action potentials 
are decreased in amplitude until they become random fluctuations that are too small to reach 
threshold potential. While Figure 8 shows that the action potentials are suppressed entirely (even 
for Iext = 60 µA/cm2, this is dependent on many parameters in the model, particularly in equations 
(5), and also the value that Dopen is held at. Nevertheless, the general trend that raising Dclose 
decreases random fluctuations, holds true. 
 

 
Figure 8: The effect of fractal dimension Dclose, on action potentials, with Iext = 60 µA/cm2 

 
Figure 9 shows the behavior of the spiking rate fluctuations over time. However, this is not the 
most convincing evidence that the spiking rate exhibits fractal behavior, because there is very little 
variation in firing rate to being with. As discussed in Section 2.2, in order to get fluctuations in 
spiking rate, simulations must be taken for thousands of action potentials, which require extensive 
computational power and time. The fact that the stochastic aspects of the extended model depend 
on a time-consuming brute-force algorithm, makes generating action potentials over a long period 
of time, difficult. Therefore there is not much to be concluded from Fig. 9, which, with more data, 
should ideally show that between two times (ideally in the thousands of milliseconds range), the 
amplitude of fluctuations does not change. 
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Figure 9: The fluctuations of firing rate, over two different time periods. 

 
4  C o n c l u s i o n  
 
 There are many directions that further work on this project could concentrate on. Firstly, 
gathering more data to demonstrate the fractal behavior of firing rate fluctuations, would be the 
first step towards demonstrating a tentative causality between fractal ion channel kinetics, and 
fractal firing rate behavior, as Lowen et al. tried to show conclusively.  
 In addition, these fractal models can be compared against experimental data. Liebovitch 
showed that for mouse hippocampus pyramidal cells, Dopen ~1.3, Dclose~2 [3]. The normally 
occurring values for fractal dimensions can be calculated from the plot of rate functions and 
probability density functions, which can be created from experimental data. A deviation from the 
normal values of such parameters could potentially signify pathological behavior. Goldberger’s 
recent article on the connections between fractal dynamics and physiology, also suggests this. This 
idea of using fractal parameters in physiological models, as a potential way to identify 
pathological conditions, is another interesting realm of research [1]. 
 In conclusion, the project has successfully implemented a Markov-based fractal model by 
Lowen et al., using both deterministic and stochastic models. In addition, I have extended the 
Liebovitch model to explore the effect of fractal dimension on conductance profiles and 
membrane voltage dynamics. However, there is potentially a lot more research that could be done 
in conclusively demonstrating causality between fractal ion channel kinetics, and firing rate 
patterns. 
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