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Abstract

Neural growth is directed by extracellular signal molecules that can either deter 
or  encourage  growth.   Those  molecules  cause  internal  signal  response  that 
effects  gene  expression  and  ultimately  cell  fate.   These  dynamic  signal 
molecules  can  be  quantified  at  the  systems  scale  with  the  nascent  fields  of 
proteomics  and  metabolomics.   Molecular-scale  “omics”  measures  can  be 
combined with cell-level phenotypic and fluorescence microscopy methods as a 
collective input to theoretical models, which are used to validate assumptions 
and generate testable hypothesis.  A complete model of neurodynamic growth, 
once complete, promises to expedite generation of therapeutic targets and cures 
for neurological diseases.  Here I describe the implementation of a model that 
allows scalable input from systems signal molecule measures and microscopy 
data.  The package written in Java is named “Axon.”  I envision this package 
will  in the future accept  real-time imaging data,  histological  data,  and omic-
scale  molecular  measures  independently.  This  provides  a  publicly  available 
framework that bridges computational and experimental biology.

1 Introduction

1.1 Extracellular signaling

Several extracellular molecules are known to interact with growing neural tissue.  Among signal 
molecules that are detrimental to growth, thrombin is known to deter neuron growth by cleavage  
of extracellular membrane receptors [1,6].  Thrombin is a unique protein in that it both prevents 
and  promotes  blood  clotting  in  a  manner  that  depends  on  other  protein  and  small  molecule 
regulators through an allosteric mechanism.  This detrimental quality of thrombin on nerve cell 
growth  seems logical  since the presence  of  blood from injury would certainly require  a  local 
evacuation  to  salvage  living  tissue  followed  by  repair  and  recolonization.   Individuals  who's 
neurons  do  not  respond  to  such  extracellular  signals  would  almost  certainly  have  aberrant 
signaling in as a result of the unique interactions of their receptors.   

1.2 Intracellular signaling

The response to extracellular signals of a nerve cell depends upon intracellular signals.  Several 
protein factors are known to be synthesized and degraded locally in extending axons and dendrites 
[2].  Signals are also know to be transported towards the cell body at an alarming rate (100-200 
mm/day) [7].  The mechanisms of transport along microtubules and actin filaments is a topic of 
great interest.  In fact, the transport of organelles such as mitochondria and ribosomes toward the 
growth cone is required for some responses to extracellular signals [7].
Some viral particles have evolved to exploit these transport mechanisms to allow specific targeting 
to neural cell types [3]. Because of this, an understanding of the molecular level players would 



facilitate targeted drug design in a similar fashion.  In fact, the transport process itself is still 
poorly understood but will benefit from quantitative proteomics and quantitative metabolomics.  

1.3 Model description and purpose

 A  powerful  method  for  neurological  model  input  is  florescence  microscopy,  because  of  its 
selectivity and sensitivity towards analytes such as Ca++ and protein markers.  I propose here an 
extension of this traditional method to include post imaging measurement of protein expression.  
Mass spectrometry based proteomics has rapidly mature and routinely allows quantification of 
high  abundance  proteins  from  cell  lysates[6].   Therefore,  we  can  correlate  cell-level  growth 
observations with molecular-level proteome measurement to enhance model accuracy.  The use of 
molecular  scale  information  in  neuron  modeling  is  not  required,  as  these  parameters  can  be 
lumped  into  one  or  several  variables  without  actually  understanding  individual  protein 
contributions  to  the  observations.   Although  these  models  can  accurately  recapitulate  the 
microscopy data, the inclusion of molecular data allows the model to be used for development of 
therapeutic  targets.   The vast  majority of  effective and safe drugs target  membrane receptors. 
Neural tissue allows the unique mechanisms of synaptic communication and intracellular transport 
along the neurite element.  

2 Methods

2.1 Qualitative model description

For proof of principle,  we consider  a  simple system with one neuron growth source and two 
responding neurons with extending dendrites.  This particular simulation design was designed with 
careful  attention  to  experimental  constraints  resulting  from  neural  culture,  microscopy  and 
subsequent proteome measurement.  Neurites from the two cells should be allowed to grow inward 
toward the signal molecule diffusion gradient, and should respond to multiple competing factors 
as would be the case in vivo (figure 1).  We also consider the relevant intracellular molecules  
including tubulin, which serve as scaffolds in neurons similar to the way railroads serve as static 
pathways for transport.  Most importantly, the extracellular and intracellular molecules interact to 
ultimately produce the neurons behavior.

Figure 1: Cartoon of relevant model components. 
(A)  Neuron-level schematic of the theoretical experiment showing a single, inhibitory source 

neuron growing on a petri dish and secreting a signal molecule into the media that attracts axon 
growth.  The three neuron system allows competition based simulations where similar parameters 
can be assigned to each of the blue neurons to compare effects.  Also note that this system could 

easily be replicated in the lab to provide model refinement parameters.  
(B) Cell-level schematic of the theoretical experiment showing the included cell elements soma, 
axon, and dendrite, as well as the intracellular molecule tubulin.  NF-kB related signal molecules 

are included, but were not yet implemented due to time constraints. Not pictured molecules 
include: glutamate, thrombin, caveolin, and the ambiguous class “food” to allow resource  reqs.



2.2 Simulations
The model implementation was written in java using the CX3D library [Zubler, F. and Douglas, 
R.].  The CX3D library has several tools already written and is designed to be highly extensible 
and portable.  Additional value in CX3D comes from the ability to export simulated architectures 
to NeuroML for further processing and/or simulation with NEURON.  CX3D also has a long list 
of tutorial simulations that are included to assist the user in understanding the framework.  First, 
several classes were written to recapitulate the model shown in figure 1, and then multiple runs 
were performed with various parameters of interest.  The package together was named “axon.” 
and the code is appended to the end of this document.  Those wishing to run the code should add 
the cx3d library as a reference to my package before compilation.  The input parameters for the 
model were chosen based on the literature here, however, the code was written to allow for 
experimentally measured inputs.  

2.3 Quantitative description 

Several  parameters quantitatively effect  the model outcome.  First, the axon direction for each 
time step is determined by the normalized average of the molecule gradient with the previous 
direction and random vector.  This appears to address a central issue proposed in []  Additionally,  
the internal concentrations of both tubulin and caveolin proteins are secreted at a constant rate, k, 
according to the following equations:

[tubulin ]t , soma=k∗[ tubulin](t−1) , soma

Where k, in the case of the model implemented here, is equal to:

k=1+ 60
([tubulin ](i−1 ) , soma)

In this case resulting in a linear increase of the molecule.

3 Results
Several classes in java were written to allow simulation of the desired neurodynamics (table 1). 
The goal of the package was to maintain flexibility and scalability in The class allows each neurite 
to respond to specific substances either positively or negatively, and specifies branching behavior  
in  response  to  that  substance.   The  class  also  incorporates  the  effects  in  the  intracellular 
concentration of tubulin, which is generated mostly in the soma with this model.  I also changed  
the functionality of the synapse formation.  

3.1.2 MyNetwork1

The first model I wrote was simplified to include only two soma with a single neurite each.  I  
placed an artificial gradient between them and set one of the neurites to be attracted to it.  I wrote a 
module for chemical repulsion and made the neurites secrete each a different signal molecule for  
the other neurite to be attracted to (figure 2A).  The behavior is evident as the top neurite appears 
to follow the other neurite after they come in close proximity.

3.1.3 MyNetwork2

Next, I added the ability of the neurites to attempt synapse formation every 100 time steps, and 
made the chemical effect  class more flexible by allowing the input of substance ID, branching 
propensity, and positive or negative direction modificiation (NeuriteChemoEffect.java).  I initially 
had  the  neurites  attempt  synapse  formation  every  time  step,  but  this  drastically  slowed  the 
simulation.   Every  100  time  steps  accomplished  the  effect  without  drastically  increasing 
simulation time.  
3.1.3 MyNetwork2
This  network  adds  terms  for  speed  and  direction  of  growth  dependent  on  intracellular  and 
extracellular signals.  This model places an arbitrary number of inhibitory and excitatory neurons 
with user specified locations and numbers of neurite elements.  Each neuron is given one axon 
(output) and one dendrite (input) and additional neurites are of undefined type.  



Figure 2: Sequential implementation of model features 
(A)  An example output from MyNetwork1.java simulation of two neurons, each with a single, 
non-branching neurite.  The red neurite from the bottom soma is attracted to the red substance, 

which is also secreted by the teal neurite from the top soma.  The teal neurite is not attracted to the 
red substance, but is attracted to a substance secreted by the pink neurite. (B) An example output 
from the simulation class: MyNetwork2.java with the same parameters, but without the artificial 

gradient of the red substance.  This model adds the ability for the neurites to form synapses, which 
are represented here as black bars connecting the neurites.  The synapse formation depends on the 
physical proximity and the presence of boutons and spines along the neurite (not pictured). (C) An 
example output from the simulation MyThirdNetwork.java showing two neurons, one excitatory 

and the other inhibitory, each with three types of neurites coded by color.  This model incorporates 
scalable inputs of signal molecules, both intracellular and extracellular, which can be used to 

effect growth and synapse formation. (D)  The output from (C) rotated on the X-Z axis to show the 
tissue culture inspired constraints on the neurite growth.
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3.1.4 WorkingModel
The final model incorporates all features of the first three in a very scalable manner.  The type of 
cell (excitatory or inhibitory for NeuroML export), number of cells, neurites per cell, substance 
responses and substance productions are all scalable inputs. Figure 4 shows an example of the 
qualitative and quantitative output generated from this interdisciplinary and multiscale-biology 
model.  As an example application of this models utility, I ran several simulations varying the 
production rates of tubulin and counting the number of synapses formed between the two cells. 
However, I was unable to compile this data in time, but I hope to include this in a peer-reviewed 
publication in the near future.  

Table 1: Table of scalable model input parameters

Object class Optional settings

NeuriteElement* • Dendrite  (input  terminal),  axon  (output  terminal),  or 
other

• Chemical  effectors  and  how  they  modify  growth 
direction and rate

Soma* (Cell Body) • Type: excitatory or inhibitory
• Number and locations
• number and positions on neurites [0<position<2π]

Master Movement Module • Replaces  class  “NeuriteChemoEffect”  for 
comprehensive movement decisions

• Object  direction  and  speed  dependent  on  the  sum  of 
intracellular and extracellular effectors

Internal secreter • Allows secretion of internal molecules
External secreter • Allows external molecule modification
MyPetriCells • Creates a “petridish” of user defined number of neurons 

with variable neurites that can be either soma, dendrite, 
or other, all with definable molecular dependencies.  

*This class is provided with the distribution of CX3D.

Figure 4: Intracellular quantities of caveolin and the qualitative neural tissue 
(A)  The plotted intracellular quantities of caveolin, which is used to determine neurite branching 
propensity. (B) The qualitative image of the same simulation.  Here the red neurite is the axon, the 

dendrite is the black neurite, and the gray element is an undefined neurite element.  The model 
shows that dendrites do not contain caveolin in this simulation, however this is not biologically 

accurate and is included only for the purpose of illustrating the differential dependencies the 
package allows.
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4 Conclusions and direction
This work lays the groundwork for a comprehensive model of neurodynamics during growth and 
development of axons.  This represents the first environment the author is aware of that aims to 
bridge theory with experimental input.  

3.1.4 Future Directions

One addition I would make to the movement engine is to add more molecules classes to increase  
accuracy  and  flexibility  of  the  molecules.   The  model  currently  allows  for  only  attractants, 
repellants,  and internal  molecules.   Four classes  of  signal  molecule  objects  will  be added:  1)  
Membrane-type  internal  signals  to  act  as  receptors;  2)  Kinase-type  internal  signals  to  act  as 
internal modifiers of signals; 3) Phosphatase-type internal signals to remove phosphorylations; 4) 
Nuclear-type internal signals to act on internal secretion of signal molecules.  Eventually, classes 
for all types of Gene Ontology (GO) classifiers will be incorporated.  
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My goal  in taking this course was to learn about neuroscience and programming.  When I started, 
I had about 6 months of experience actually writing [R] code.  Now, as I complete this project I 
learned to write code in both python and java.  The neurobiology was also very intriguing and new 
to me.  I was blown away by the mini-symposium on brain-machine interfaces (BMI).  My 
favorite talk was by Dr. Todd Coleman.  I have endless ideas about where to incorporate my 
biochemical understanding with the study of neural systems at the molecular-level; I look forward 
to collaborating on these topics in the near future.  This course far exceeded my expectations and I 
will emphatically recommend it to my peers. 
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