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Abstract 
‘Granger’ causality was explored as a method for determining 
effective/functional vascular connections between lung regions in a two-
dimensional time series of blood flow MR images, generated using Arterial 
Spin Labeling (ASL). Two different approaches to segmentation were 
employed to attempt to optimize the ratio of spatial to temporal data, lobar 
segmentation and ‘high-resolution’ segmentation of the lung field. While 
lobar segmentation yielded significant causal interactions during data 
collected in normoxic breathing, insufficient number of observations 
hampered detection causal interactions during either hypoxia or hyperoxia. 
In contrast, utilizing higher resolution segmentation on data acquired at 
twice the temporal resolution (5s as opposed to 10s), significant differences 
in effective network connectivity and flow autonomy were revealed. 
Network connectivity and autonomy were enhanced during hypoxic 
breathing compared to normoxia or hyperoxia, suggesting a level of active 
flow control present in the healthy lung that becomes engaged when oxygen 
levels are reduced.   

 

1 Introduction 
‘Granger’ causality or Granger causal methods describe an array of statistical and analytical 
techniques that attempt to elucidate the directed flow of information between a set of 
observed time-varying signals using the idea of temporal precedence. Although having its 
origin in economic theory [1], these techniques have found a myriad of applications in the 
field of neuroscience, where understanding network causal dynamics is of particular import. 
In combination with functional magnetic resonance imaging (fMRI), there now exists a 
framework for the investigation of complex and rapidly adapting neural networks in humans 
that possesses both spatial and temporal specificity. For example, Deshpande et al 
incorporated a causal analysis of fMRI data to successfully demonstrate changes in neural 
network connectivity concomitant with motor fatigue [2].  In another study, Roebroeck et al. 
applied similar methodology to the mapping of interactivity between brain regions during 
complex visuo-motor tasks [3]. While these examples highlight application to in-vivo neural 
networks, the techniques employed are neither limited to the brain, nor neural networks 
themselves. We seek to extend the scope of these techniques to the purpose of studying 
vascular dynamics in the human lung. 

 
1 . 2  T h e  p u l m o n a r y  v a s c u l a r  n e t w o r k  



Efficient gas exchange is of primary importance in the lung. Whereas on first pass this may 
be thought to result solely from passive diffusion processes, in reality the relative 
effectiveness of passive diffusion depends heavily upon proper micro and macro-scale 
matching of flow between two distinct mechanical networks (the exchanger mass-transport 
problem). Furthermore, evidence exists to suggest that there is a strongly active and 
temporally varying component to vascular network regulation in the healthy lung [4]. 
Hypoxic pulmonary vasoconstriction (HPV), a phenomena that results in reduced blood flow 
to poorly ventilated lung regions [5], may serve as an important mechanism by which this 
regulation occurs.  
 
The pulmonary vasculature is particularly well suited to the application of network analysis. 
As the entirety of cardiac output travels through the pulmonary vascular bed, local changes 
in vessel resistance by necessity must affect flow in other, potentially more distant regions, a 
phenomenon termed ‘flow steal.’  Yet, as the matching of ventilation and perfusion at the 
small scale uniquely determines alveolar oxygen pressure (assuming constant inspired 
concentration), the same HPV mechanism described earlier has the potential to drive the 
emergence of complex flow feedback dynamics across the organ as a whole. As most lung 
pathology has as its hallmark a disruption of vascular and ventilatory coupling, the 
possibility exists that quantifying disruption in, or alteration of, vascular network dynamics 
may provide diagnostic utility, with the hope of early identification of progressive disease 
before changes in gross pulmonary function can occur.   
 
1 . 3  N o n - i n v a s i v e  q u a n t i f i c a t i o n  o f  f l o w  

While network analysis of the kind described above is certainly not a new idea, it is only 
relatively recently that methodological developments have permitted the acquisition of 
spatially and temporally detailed information on blood flow in the human lung. Prior studies 
in this field have, for example, utilized microsphere tracer methods in which radiolabeled 
microspheres delivered intravenously embed themselves in pulmonary capillaries in 
proportion to local flow [6-9]. Not only are number of temporal observations limited to the 
number of different labels available, but the technique further requires animal sacrifice to 
count the number of embedded microspheres, making translation to human study impossible. 
Radiation exposure and contrast toxicity severely hampers repeated use of X-ray, CT and 
other fluoroscopic techniques to the acquisition of blood flow data over time, making these 
poor choices for studying pulmonary vascular temporal dynamics in any meaningful way.  
 
While MRI is often thought of in terms of purely anatomical imaging, a significant interest 
has developed in utilizing the underlying physical properties of the technique to capture 
‘function’ as opposed to anatomy. A recent adaptation, known as pulmonary Arterial Spin 
Labeling (ASL), allows the repeated creation of flow image contrast with temporal 
resolution on the order of 5-10s and spatial resolution of 1 cm3 [4, 10, 11]. 
 
1 . 4  A p p l i c a t i o n  o f  G r a n g e r  c a u s a l  a n a l y s i s   

Now with the capability to acquire spatio-temporal blood flow measurements, the challenge 
arises as to how best to leverage these complex data sets to begin to ask physiologically 
meaningful questions about the mechanisms that underlie blood flow heterogeneity in the 
lung, and how it relates to proper gas exchange function. To this end, it is believed that the 
framework of Granger causality discussed in the context of neural networks above provides 
a potential means. It is hypothesized that, when faced with a hypoxic challenge, the 
pulmonary circulation actively responds in an effort to maintain gas exchange efficiency, 
and further, that this response may be characterized by an enhancement of effective 
connectivity between lung regions as blood flow is purposefully redistributed in both a 
dynamic and coordinated fashion. As a corollary, it is further supposed that at rest or when 
faced with supplemental oxygen, the healthy lung is largely in a state of ‘weak’ control 
characterized by uncoordinated activity.  
 



2 Methods 
 
2 . 1  P u l m o n a r y  a r t e r i a l  s p i n  l a b e l i n g  ( A S L )   

Arterial spin labeling is the one of magnetic resonance imaging techniques, which quantifies the 
spatial distribution of pulmonary blood flow. The essential idea of the technique is that the 
incoming blood from outside of image slice is magnetically manipulated and thus highlighted in 
the inside of image slice. For imaging of lung, flow-sensitive alternating inversion recovery with 
an extra radiofrequency pulse (FAIRER) is used. This technique acquires two MR images in 
series; For the first image, a slice-selective inversion recovery preparation pulse is applied to a 
band that encompasses the imaging slice. The magnetization within a slice is inverted, while the 
magnetization outside the slice is unchanged. After a delay time (TI), an image is acquired. The 
measured net MR signal in a voxel is a mixture of signals of static pulmonary tissue in the voxel, 
which are inverted, and the signals of delivered blood, which are not inverted. For the second 
image, the inversion recovery preparation pulse is applied non-selectively so that tissue and blood 
magnetization in both inside and outside of image slice are all inverted. After the same delay time 
(TI), the obtained net MR signal in a voxel is a mixture of signals of static tissue and delivered 
blood, which are both inverted. When two images are subtracted, the signals from static tissue 
within a slice is canceled. However, the signal of blood delivered is not canceled, leaving a 
difference signal, which is proportional to the delivered blood volume during the delay time (TI). 
 
 
2 . 2  R e s p i r a t o r y  g a t i n g  a n d  i m a g i n g   

MR image was acquired during a short breath-hold at functional residual capacity (FRC) lung 
volume. The image acquisition was repeated approximately every 5 seconds, altering between two 
types of ASL images. Between two consecutive image acquisitions, subjects were asked to 
complete one breathing cycle and repeat FRC volume for another image acquisition. Each 
experimental run covers 300 MR images in ~25 minutes so that 150 pulmonary blood flow images 
were computed for each subject. 
 
2 . 3  E x p e r i m e n t a l  d e s i g n  

Each subject underwent studies (Normoxia, Hypoxia, and Hyperoxia) with challenge blocks of 
altered FIO2 in randomized order between subjects. Each run consists of three challenge blocks: 
100 breaths (images) on ambient air (FIO2 = 0.21), 100 breaths on the test gas from the bag, 
followed by another block of ambient air. Thus, 50, 10, and 40 pulmonary blood flow images were 
obtained during the first block, transition between ambient air and test gas, and test gas, 
respectively 
 
2 . 4  G r a n g e r  c a u s a l i t y  a n d  a u t o n o m y   

Granger causality implements a statistical interpretation of causality where time series Y Granger 
causes X if knowing the past of Y can help to predict X, better than knowing the past of X alone.  
The Granger causality uses an autoregression model, with the number of lagged values to include 
determined by application of an appropriate criteria (either Akaike or Bayesian information 
criterion). Let x and y be time series X and Y respectively, and x is expressed as autoregression of 
proper lagged values of x and u1 is residual (Eq.1).  This is an autoregression prediction model. 
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Here, the variance of vector u1 is Σ1. 
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The term of lagged values of y is added to the autoregression and residual u2 is computed.  
 

𝑣𝑎𝑟 𝑢!! = Σ! 
The variance of vector u2 is Σ2. 
 

ln  ( Σ! / Σ! ) 
 
If Σ2 is reduced by adding the past of Y and the log of the ratio of two variances (Eq.3) is positive 
suggesting the autoregression prediction model is improved, Y “Granger causes” X. 
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Granger autonomy is understood as the degree of self-causation. Instead of asking whether the 
prediction error of X is reduced by including past history of Y, the Granger autonomy measure 
asks the other way around: the prediction error of Y is reduced by inclusion of its own past, given 
a set of external variables X1, X2…Xn. 
 
2 . 5  A p p l i c a t i o n  t o  t h e  v a s c u l a r  n e t w o r k  

2 . 5 . 1  L o b a r  s e g m e n t a t i o n  

A pulmonary blood flow image was divided 
into three parts based on the three 
anatomical lobes in the right lung (Figure 
##). The mean blood flow value within each 
lobe was computed for each image so that 
three time series data were obtained for each 
subject; 3 variables and 150 observations. 
G-causality and G-autonomy among three 
time series data were then computed, 
respectively.  The false discovery rate for 
multiple testing was set at 5% for statistical 
significance. 
 
 
 
 
 
 
 

 
Figure 1. Three lobes in the right lung. 
In a sagittal slice of right lung with spine 
posture, three lobes are distributed in over six 
subjects. 1: superior lobe, 2: middle lobe, and 3: 



2 . 5 . 2  H i g h - r e s o l u t i o n  s e g m e n t a t i o n  

A pulmonary blood flow image originally acquired at 256x128 with a 40cm field of view (yielding 
1.5 mm x 3 mm x 10 mm) was spatially smoothed using a gaussian kernel, providing spatial 
downsampling to 32x32. In contrast to the data utilized for lobar segmentation, data acquisition 
for the high-resolution segmentation protocol was conducted utilizing a 5-second temporal 
resolution and 180-breath runs on a single gas (i.e. all air, all hypoxia, or all hyperoxia). A region 
of interest outlining the lung field was taken, and edges of the lung field were discarded to prevent 
partial voluming effects, yielding approximately 40 individual voxel time series within the sagittal 
slice as shown in Figure 2 below. The G-causality matrix and G-autonomies were computed on 
these voxel time series for the hypoxic, hyperoxic, and normoxic periods separately for 
comparison. As before, the FDR was set to 5% to adjust for multiple comparisons. Autonomy 
values deemed significant were then summed to yield an overall measure of ‘lung autonomy’ for 
each condition.  
 

 
 

Figure 2. High-resolution segmentation of sagittal slice through the right lung 

3 Results  
 
3 . 1  L o b a r  i n t e r a c t i o n s  

For normoxic challenge using all 150 pulmonary blood flow images, Granger causality and 
autonomy were both discovered except for Subject D (Table 1.). In five subjects, inferior lobe (#3 
in Fig. 1) had a tendency to show both causality (either source or sink) and autonomy. The results 
from hypoxic and hyperoxic (using 40 pulmonary blood flow images) failed to reject null 
hypotheses for both causality and autonomy, respectively.  
 
Table 1. Granger Causality and Autonomy among three lobes in right lung during Normoxia 
 

Subject	
   Causality	
   Autonomy	
  
A	
   X	
   3	
  
B	
   3è1	
   3	
  
C	
   2è3	
   1	
  and	
  3	
  
D	
   X	
   X	
  
E	
   3è1	
   2	
  and	
  3	
  
F	
   1è3	
   1,	
  2,	
  and	
  3	
  



The false discovery rate for multiple testing was set at 5% for statistical significance. Granger 
causality:  the arrow è represents the causal flow, i.e. 3è1: lobe #3 causes  lobe #1. X failed to 
reject null hypothesis. 1: superior lobe, 2: middle lobe, and 3: inferior lobe, respectively. 
 
 As seen in Table 1, there was a trend that inferior lobe (#3 in Fig. ##) showed both causality 
(either source or sink) and autonomy in five subjects, suggesting there is an active regulation 
controlling the blood flow in the lobe. Both hypoxic and hyperoxic runs failed to reject null 
hypotheses, implying that 40 observation is not enough to discover either causality or autonomy.  
 
3 . 1 . 1  I n d i v i d u a l  v o x e l  i n t e r a c t i o n s  

Data from two subjects were analyzed utilizing G-causality and G-autonomy measures for 
each of three conditions; air breathing, hypoxic (12.5% Oxygen) breathing, and hyperoxic 
(100% Oxygen) breathing. Figure 3 displays the G-causality matrices for each of these 
conditions for one subject.  

 

Figure 3. Granger causality matrices for subject A in hypoxia (at left), normoxia (center) and 
hyperoxia (right).  

Setting the FDR to 5% and analyzing for significant interactions for both subjects reveals the 
network topologies shown in Figure 4 for subject A, and Figure 5 for subject B.   

 

 

 

 

 
 
 

 
 
 

 

 

 

 

Figure 4. Significant causal interactions for subject A in hypoxia (top left), normoxia (top 
right) and hyperoxia (bottom).  The FDR for multiple comparisons testing was set to 5%. 
 



 

 
 
 
 
 
 
 
 
 
Figure 5. Significant causal interactions for subject B in hypoxia (top left), normoxia (top 
right) and hyperoxia (bottom).  The FDR for multiple comparisons testing was set to 5%. 
 
It can be clearly seen in both Figure 4 and Figure 5 that effective connectivity is the greatest 
in the hypoxic breathing condition, and reduced in either normoxic or hyperoxic breathing. 
Furthermore, at least in the case of subject A, it appears that there is a progressive decrease 
in connectivity as inhaled oxygen concentration increases. Summing significant autonomies 
for each of the conditions yielded (in order of hypoxia, normoxia, hyperoxia) 5.47, 1.4, and 
0 for subject A and 3.21, 1.98 and 1.37 for subject B. These changes reflect a decrease in the 
influence of past values of flow to individual lung regions on future values of flow to those 
same regions as oxygenation increases. It should be noted that this does not necessarily 
reflect that flow is more stable during hypoxia, but that changes in flow become more 
predictable concomitant with activation of hypoxic pulmonary vasoconstriction, and less so 
as HPV is reduced.  
 
4  Conclusions 
As a first foray into the application of causality measures as a means of defining vascular 
network topologies, these data serve to underscore the potential for gaining powerful insight 
into the activity of complex physiologic feedback control when faced with environmental 
challenge. The data clearly demonstrate both enhanced connectivity and autonomy, which 
are indicative of an increasingly driven system, when faced with oxygen deficit known to be 
sufficient to induce active mechanisms of blood flow redistribution. Further, the data on 
autonomy also suggest that in healthy subjects breathing air, the pulmonary vasculature is 
largely in a state of weak control, which may further yet relax when oxygen becomes overly 
abundant. This may serve as an incredibly powerful potential tool for diagnosis and staging 
of clinical lung pathology that serves to disrupt mechanisms of ventilation and perfusion 
matching necessary for the maintenance of normal gas exchange. Should disruptions in these 
mechanisms be detectable via a similar analysis to the one presented herein, before changes 
in gross pulmonary function were to occur (i.e. decreases in blood oxygen saturation or 
spirometry), more advanced treatment regimens may be deployed at an earlier stage, slowing 
disease progression. Such advance warning signs detectable by causal analysis may be 
interpreted through an enhanced state of vascular effective connectivity at rest compared to 
normal subjects.  



A significant challenge to application of causal techniques to these data sets lay in the 
general imbalance between the level of spatial resolution required to detect meaningful 
changes in flow, and the number of temporal observations available. Clearly, the lack of 
significant findings relating to hypoxia and hyperoxia vs the positive connections shown in 
normoxia for the lobar analysis suggests either insufficient temporal sampling, a general loss 
of information relating to over-smoothing in the spatial domain, or both. Future data 
acquisition must take this careful balancing into consideration, with at least 200 independent 
temporal measures of flow in each of the three conditions.  
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