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Abstract 
We used a model of spike-timing-dependent plasticity (STDP) based on 
calcium signaling to test the effects of correlated inputs on synaptic weight 
distributions. Gilson and Fukai (2011) used amplitudes for the STDP curve 
that depended on synaptic strength and demonstrated the emergence of 
stable bimodal weight distributions. Those sets of synapses with correlated 
inputs were more strongly potentiated than those without. However, this 
model did not include any biophysical mechanism for STDP. Whereas most 
versions of STDP model the time difference between pre- and postsynaptic 
spikes explicitly, as in the above study, Shouval et al (2002) used a model of 
NMDA-R-dependent calcium signaling to effect long-term potentiation and 
depression in a similar spike-timing-dependent manner to traditional STDP. 
We implemented a biophysical model inspired by this that used weight 
dependence along with modified calcium dynamics. We found that there is 
systematic potentiation of inputs with strong correlation, and there is 
depression of inputs with weak correlation. 

 

1 Introduction 
 
1 . 1  B a c k g r o u n d  

Spike-timing-dependent plasticity (STDP) is a theory of learning that states that a synapse is 
strengthened if the presynaptic spike arrives before the postsynaptic spike, and the synapse is 
weakened if the presynaptic spike occurs after the postsynaptic spike [5]. We used a model of 
STDP based on calcium signaling to determine the effect of input correlation on synaptic 
weight change. Some work suggests that calcium signaling, along with other signaling 
mechanisms, can account for STDP [3]. 

 
1 . 2   G o a l s  

We were interested in determining the effect of calcium signaling on long-term potentiation 
(LTP) and long-term depression (LTD) of synaptic strength. Our model included numerous 
excitatory synapses that included both AMPA and NMDA receptor kinetics along with 



voltage-gated calcium channels (VGCC), all feeding into a single Hodgkin-Huxley neuron. 
Using different spike-timing protocols, we wanted to analyze the STDP that could result 
from the model. Each synapse then received a stochastic train of spikes with a given average 
firing rate, and different subgroups of inputs had their inputs temporally correlated at a 
certain frequency. With this, we wanted to test whether the correlation of input spikes could 
lead to distributions of potentiated and depressed synaptic weights as seen in [2]. 

 

 
2 Methodology 
 
2 . 1  Numerical simulation 

All the simulation and analysis was performed using MATLAB (Mathworks, Natick, MA, 
USA). The dynamics of a neuron and its synapses was modeled by differential equations 
which were solved numerically using Euler’s method; each variable was updated every 0.05 
ms based on the gradient.  

 
2 . 2  Dynamics of a neuron 

A neuron was simulated based on a Hodgkin-Huxley model. This model has four internal 
variables: the membrane potential V, and the three gating variables m, n, and h representing 
fast Na+ channel activation, slow Na+ channel inactivation, and K+ channel activation, 
respectively. The dynamics of the variables are determined by the following equations: 
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Cm = 1.0 uF/cm2 is membrane capacitance, gNa = 120.0 mS/cm2 is sodium conductance, ENa = 
45.0 mV is sodium reversal potential, gK = 36.0 mS/cm2 is potassium conductance, EK = -82.0 
mV is potassium reversal potential, gL = 0.3 mS/cm2 is leak conductance, and EL = -59.4 mV 
is leak reversal potential. 

 
2 . 3  Dynamics of synapses 
  

Synapses were simulated using a calcium-based STDP model. Each synaptic current was fed 
into a neuron, and synaptic current depended on the membrane potential of the neuron. 
 
2 . 3 . 1  Receptor kinetics and calcium dynamics 

Synaptic dynamics included both linear and nonlinear components. Both NMDA-Rs and 
VGCCs had a voltage-dependent conductance, as can be seen in Figure 1, and as described in 
[1]. The following variables determined the voltage-dependent fraction of channels ready for 
ion flux: 
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   (for NMDA-Rs), 
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   (for VGCCs).  

Because NMDA-R conductance peaks at subthreshold potentials, it is useful as a detector of 
excitatory postsynaptic potentials (EPSPs); because the VGCC conductance peaks at positive 
potentials, it acts as a detector of backpropagating action potentials (BPAPs). 

 

 
Figure 1: Current-Voltage relationships for NMDA-Rs and VGCCs. (A) Peak conductance 

for NMDA-Rs occurs at around -20 mV, making it a good EPSP detector. (B) Peak 
conductance for VGCCs occurs around +10 mV, making it a good BPAP detector. 

 

The fraction of open glutamatergic AMPA and NMDA receptors was set to unity every time 
a presynaptic spike occurred, and this fraction decayed over time according to the following 
relationships: 
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with τAMPA = 2.5 ms and τNMDA = 30 ms.  

 

V is the membrane potential of the spine, and it receives currents from the neuroreceptors, 
from the calcium channels, from the soma (to mediate BPAPs), and from leakage. The 
dynamics of the variables are determined by the following equations:  
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For the model to work, a nonlinearity had to be introduced to the VGCCs, namely that the 
voltage they experienced was equal not to the synaptic membrane voltage, but to the sum of 
the membrane voltage with an extra voltage term from the NMDA-R activity, according to 
the following equations: 

A B 



 !!!"#$
!!

= 30  !!"#$/!! − !!"#$/!!"#$    , 

 !!"## = ! + !!"#$. 

The effects of adding this can be seen in Figure 3B. Biophysically, this might represent the 
VGCCs being located close to the NMDA-Rs in the postsynaptic membrane, allowing them 
to feel an extra local voltage increase following presynaptic activity. Finally, calcium influx 
occurred both through NMDA-Rs and through VGCCs, decaying toward a basal 
concentration of zero without any activity: 
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The level of calcium in the synaptic spine compartments determined how the synaptic 
strength would change. 

 
2 . 3 . 2  Spike-timing dependent plasticity 

Spike-timing dependent plasticity (STDP) changes synaptic strength through the inclusion or 
removal of AMPA-Rs [4]. We simulated this by having synaptic strength change through the 
updating of gAMPA, using a learning rule that depends on the level of calcium in the synaptic 
spine alone [2][5]. The following system of equations describes the update rule:  
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The depression and potentiation rates limit how quickly each of the independent LTD and 
LTP mechanisms operate, respectively, and the thresholds ensure that each of these occur at 
only a certain level of [Ca++]. The learning rate ensures that strong weight changes occur only 
after large calcium influxes. 

 
Figure 2: VGCCs are crucial for calcium-based STDP; ∆t = tpost – tpre shown between -150 

and +150 ms, centered on presynaptic EPSP. Approximate potentiation (top line) and 
depression (bottom line) thresholds are depicted (A) With no VGCCs, BPAPs are not visible 

at all except after a presynaptic input, when the NMDA-Rs open from neurotransmitter 
release; there is virtually no distinction in [Ca++] for causal or anti-causal activity. (B) 

Addition of VGCCs provide clear distinction between EPSPs and BPAPs, as well as excellent 
causal/anti-causal distinction in calcium levels. 
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The synapse should depress whenever a BPAP precedes an EPSP, representing anti-causal 
activity, and it should potentiate whenever an EPSP precedes a BPAP, representing causal 
activity. For this to work, each of the relative timings must produce distinct profiles in the 
calcium transients generated. The supplementary information of Graupner and Brunel’s paper 
[3] shows a model (G-B) for implementing STDP with calcium thresholds for LTD and LTP 
that uses explicit timing information of the BPAP and EPSP. We compared our model to 
theirs and adjusted the conductances and time constants of the NMDA-Rs and VGCCs in our 
model until our calcium dynamics nearly matched theirs for different timing protocols, as 
seen in Figure 3. Our model is more biophysical in this regard in that it uses only simulated 
ion channels to achieve the desired calcium profiles. 

 
Figure 3: Calcium dynamics of our model compared to the Graupner-Brunel (2012) model 
with approximate potentiation (top line) and depression (bottom line) thresholds depicted. 

(A) Calcium transient from postsynaptic BPAP (mediated by VGCCs) followed 150 ms later 
by calcium transient from presynaptic EPSP (mediated by NMDA-Rs). (B) Summing of 

calcium at ∆t = tpost – tpre = +20 ms before nonlinear component introduced to our model; too 
little time is spent in LTP region. (C) Summing of calcium at ∆t = -20 ms; most time is spent 

in LTD region. (D) Summing of calcium at ∆t = +20 ms after introduction of nonlinear 
component; more time is spent in LTP region. 

 

We test our model in later sections. 

   
2 . 4  Correlated inputs 

Beyond simply achieving biophysically implemented STDP, we wanted to test the effects of 
having inputs temporally correlated, on the LTP and LTD of synapses. We inputted spike 
trains to 80 simulated synapses, using the model described above, using different forms of 
correlation: full, sinusoidal, and none (see Figure 4). 
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Figure 4: Spike trains for 80 synaptic inputs to the model, showing sinusoidal correlation 
(top/blue for first 6 seconds, middle/green for last 6 seconds), full correlation (middle/green 

for first 6 seconds, top/blue for last 6 seconds), or no correlation (red/bottom). 

Average firing frequency: 5 Hz. Correlation frequency: 2 Hz. 

 

Receiving these inputs over a period of 12 seconds of simulation time, we observed the 
changes in the synaptic weight distribution. 

 

 
3 Results  
 
3 . 1  L T P  a n d  L T D :  d e p e n d e n t  o n  t i m i n g ,  w e i g h t ,  a n d  f r e q u e n c y  

As you can see in Figure 5 on the next page, as we hoped, as the synaptic weight increases, 
LTP decreases and LTD increases. This results in saturation of the synapse [2]. In our STDP 
rule, we didn’t use any hard upper bounds on the weight, as some models do. Instead, like in 
[2], we used a weight-dependent decrease in potentiation and a weight-dependent increase in 
depression that kept the weight from diverging to infinity during LTP. When we take away 
the VGCC’s, STDP is eliminated, showing that good models of STDP need to take these into 
account in addition to the NMDA-Rs. This contrasts with [5], which didn’t get a standard 
STDP curve because they didn’t take into account the other calcium channels. 



 
Figure 5: STDP curves at different initial weights; depression can be seen in anti-causal 

region (tpost – tpre < 0); potentiation is seen in causal region (tpost – tpre > 0). (A) LTP 
outweighs LTD for small initial weight of 0.1 mS/cm2. (B) Nearly equal potentiation and 
depression for moderate initial weight of 0.5 mS/cm2. (C) LTD outweighs LTP for large 
initial weight of 0.7 mS/cm2. (D) At large weights (0.9 mS/cm2 in figure), learning rule 

becomes all depression. 

 

Figure 6, on the next page, shows frequency response curves for various initial weight 
values. A frequency response curve shows how LTP and LTD can depend on input frequency 
alone. Figure 6B shows what electrophysiologists would typically see, but at low 
frequencies, we see LTD, and at high frequencies, we see LTP. Nevertheless, as you can see 
in Figure 6A, for low weights, slight LTD occurs at all stimulation frequencies. Also, as can 
be seen in Figure 6D, for very high weights, LTD occurs at all frequencies. Finally, as you 
can see in Figure 6C, for moderate weights, LTP occurs at all frequencies. 
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Figure 6: Frequency response curves for different initial weight values on a neuron of 
moderate excitability. (A) At 0.1 mS/cm2, slight depression occurs at all stimulation 

frequencies. (B) At 0.3 mS/cm2, depression region occurs for small to moderate stimulation 
frequencies, and saturating potentiation occurs for high stimulation frequencies.            

(C) At 0.5 mS/cm2, every stimulation drives postsynaptic output, so all frequencies see LTP. 
(D) At 0.9 mS/cm2, all-depression learning rule takes over, and all stimulation frequencies 

cause LTD. 

 
3 . 2  M o d e l  o u t p u t  g i v e n  i n p u t  s p i k e  t r a i n s  

Figure 7A on the next page shows the postsynaptic spikes that were driven at each instance of 
correlated input. Initial weights too small to elicit postsynaptic spikes saw only depression on 
other runs. Figure 7B shows the response of the model to the inputs given in Figure 4. As you 
can see, fully correlated inputs showed LTP that saturated without any upper limit. Also, 
sinusoidally correlated inputs exhibited both LTP and LTD. Finally, inputs that were 
completely uncorrelated demonstrated LTD exclusively. All of these results were what we 
expected, so we can conclude that full input correlation yields LTP, while full input 
decorrelation yields LTD. 
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Figure 7: Response of model to inputs given in Figure 4. (A) Postsynaptic spikes were driven 

at each instance of correlated input; initial weights too small to elicit post-synaptic spikes 
saw only depression on other runs (not shown). (B) Changes in synaptic weights. Inputs that 
were fully correlated (green for first six seconds, blue for last six seconds) exhibited LTP that 
saturated without any explicit upper bound. Inputs with sinusoidal correlation (blue for first 
six seconds, green for last six seconds) showed slightly less tendency to depress than those 

completely uncorrelated (red), whose weights stochastically decayed. 

 
 
 
4 Conclusions 
We showed, using a model of STDP based on calcium signaling, that as expected, fully 
correlated inputs exhibit LTP, while fully decorrelated inputs show LTD. We also 
demonstrated that as synaptic weight increases, LTP decreases and LTD increases. This 
results in saturation of the synapse [2]. We also showed that at low stimulation frequencies, 
we see LTD, and at high frequencies, we see LTP. Together, these results may help us better 
understand how learning occurs in the brain because of the biophysically realistic model on 
which they are based. 
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