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Abstract

We investigated schemes to systematically reduce the number of of different
of differential equations required for biophysically realistic neuron model. The
original scheme is invented by Thomas Kepler in 1992, and it is used in many
neuronal models, such as Hodgkin-Huxley, A-current model and a stomatogastric
neuron model.

The general idea of this scheme is to inverse all the gating variable equations
to get corresponding equivalent potential. We base the reduction on the fact that
some of those potentials have similar wave forms with the membrane potential or
the other equivalent potentials. We use singular perturbation theory and principal
component analysis to analyze the reduction. We successfully reduce the phase-
dimensionality of a realistic HVC neuron model from 12 to 3. The membrane
potential and equivalent potentials have identical behavior in both the reference and
reduced model and it holds for arbitrary injected current under certain parameters.

1 Introduction
Neural networks are composed of individual neurons interacting via synapses. For
better understanding and simpler analysis of network models, models of each neuron
should be as simple as possible while retaining essential biological features. The most
remarkable biological individual neuron model is put forward by Hodgkin and Huxley
[1]. The Hodgkin-Huxley model is a four-variable model describing the generation
of action potentials in the squid giant axon based the properties of the neuron’s ionic
channels. Analysis of H-H model shows that it contains two kinds of variables: excita-
tion variables and recovery variables. Under this idea, Fitzhugh and Nagumo proposed
a two-dimensional reduced model with the membrane potential and slow recovery vari-
ables. Early computer simulation by Krinskii and Kokoz [2] has shown that there is
linear relationship between the gating variables n(t) and h(t). Finding numerical rela-
tionships between several variables is an essential process in dimension reduction.

Later, Kepler et al. [3] introduced a more systematic reduction method called ”equiv-
alent potentials” to discover those relationships among gating variables. They reduced
the H-H model to a two-dimensional system by using the instantaneous m approxi-
mation and combining the variables h and n, which have a similar time scale. This
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method has been wildly applied: Kepler et al. [3] reduced a modification of H-H to
which the A current has been added. The six-dimensional model was reduced to a
three-dimensional one by introducing three time scales: the fast one of V and m,
the slower one of h, n and aA, and the slowest one of bA. Thereafter, this method
has been extended to simplify other rich, physiologically realistic models. A stom-
agtogastric ganglion LP neuron containing 13 dynamical variables was simplified to
seven-dimensional one [4]; And the eight variables for the giant neuron localized in
the espohageal ganglia of the marine pulmonate mollusk Onchidium verruculatum has
been reduced to four-and-three-dimensional systems by regrouping variables with sim-
ilar time scales [5].

Meliza et al. [6] created a detailed conductance-based model for the neurons from
zebra finch HVC. This 12-dimensional model is described in Section 2. We have pro-
duced a three-dimensional reduced model that yields similar dynamical behavior. We
describe the reduction we made to the 12-dimensional model in Section 3. Our attempt
to analyze the potential reduction using principal component analysis is described in
Section 4. The two models are compared and the results are summarized in Section 5
and 6.

2 Reference Model for HVc neuron

2.1 Structure of Model
The conductance-based mathematical model of HVc neuron is the starting point of this
project. It is a single compartment isopotential model with a passive leak conductance
and eight active, voltage-gated conductances. The selection of sodium, potassium,
calcium, and nonselective cation channels that have been found in a broad range of
neurons, which can be regarded as an extension of H-H model with additional current
taken into account. In the following, we give a brief description of this model, which
we refer to as the reference model.

The change in the electrical potential of the model neuron is casued by the accu-
mulation of currents that flow through channels located within the membrane and an
external current injected through an electrode. The cell is assumed to be isopotential
with its membrane potential V , satisfying the equation:

Cm
dV

dt
=
Iext
ISA

+ INaT + INaP + IKA1 + IKA2 + IK3 + Ih + ICaL + ICaT + ILeak

where Cm is the membrane capacitance and each of the voltage-gated currents Ij’s
depends on ion ow through channels whose permeability is controlled by activation (x)
and inactivation (y) gating variables:

Ij = gj x
N1 yN2 (Ereversal − V )

where gj is maximum conductance and N1 and N2 are integers. The voltage-gated
currents we include are:
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• INaT is transient sodium current. This current is strongly voltage dependent
and is largely responsible for generating action potentials. Its kinetics can be
represented by m3h, and m is a fast variable.

• INaP is persistent sodium current, and its kinetics are represented by n.

• IKA1 is non-inactivating fast potassium current. It has no significant inactivation
and thus it is represented by m4

• IKA2
is inactivating potassium current whose kinetics are represented by p4q.

• IK3
is slow potassium current, and kinetics are represented by u.

• Ih is hyperpolarization-activated cation current. A mixed cation current that
typically activates with hyperpolarizing steps to potentials negative to −50 to
−60 mV. The kinetics of activation during a hyperpolarization, and deactivation
following repolarization, are complex. Its kinetics is simply represented by z.

• ICaL is the high-threshold L-type calcium current whose kinetics are determined
by s2t.

• ICaT is the low-threshold T-type calcium whose kinetics are represented by r2.

• ILeak is the leak current. It is not voltage dependent in our model, and it is
represented only by its constant maximal conductance gl

The dynamics of the ion channel gating elements are given by voltage-dependent
opening and closing rates. To ensure numerical stability, we use a hyperbolic tangent
approximation to the Boltzmann barrier-hopping rate

dx

dt
=
x∞(V )− x

τ(V )

x∞ =
1

2

[
1 + tanh

(
V − V1/2

κ

)]
τ(V ) = τ0 + τmax

[
1− tanh2

(
V − V1/2

σ

)]
where V1/2,j is the half-activation voltage, κj is the slope of the activation function
between the closed and open state, τ0 is the minimum relaxation time, τ0 + τmax is the
peak relaxation time, and σj is the width of the relaxation time function. Equations for
the inactivation variables (y) have a similar form.
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2.2 Experimental Data and Parameters of the Model
The reference model consists of 12 differential equations. Eq. (1) is for the membrane
potential V ; Eq. (6) represents the general equation form for all 11 gating variables.

dV

dt
=

1

Cm

(
INa + IK + Ih + ICa + ILeak +

Iinj
ISA

)
(1)

INa = (gNaTm
3h+ gNaPn)(ENa − V ) (2)

IK = (gKA1
b4 + gKA2

p4q + gK3
u)(EK − V ) (3)

Ih = ghz(−43− V ) (4)

IK = (gCaHr
2 + gCaLs

2t)(ECa − V ) (5)

dxj
dt

=
xj∞(V )− xj

τj(V )
x = {m,h, n, b, p, q, u, z, r, s, t} (6)

x∞,j =
1

2

[
1 + tanh

(
V − V1/2,j

κj

)]
(7)

τj(V ) = τ0,j + τmax,j

[
1− tanh2

(
V − V1/2,j

σj

)]
(8)

The experimental data was obtained by measuring membrane voltage of neurons in
slices from adult male zebra finches. Neurons are assumed to be isolated without inter-
acting with other neurons. Parameters in the model are determined by synchronizing
experimental data with the mathematical model above.

The optimization was accomplished using the open source software IPOPT [7] on
standard desktop hardware. The data assimilation window over which the model prop-
erties are estimated was 1500 ms long; the data were sampled at 50 kHz, resulting in
75,000 time points of voltage data. Common to direct method variational approaches,
the model trajectories were co-located during the optimization procedure; that is, each
component of {y1(t), y2(t), ..., y12(t)} was treated as an independent variable with the
model dynamical equations imposed as equality constraints between neighboring time-
points. Gating particle variables were constrained between 0 and 1, and each of the
parameter was constrained between biologically realistic bounds. The 73 parameters
of the model are presented in Appendix A.

The success of synchronization is validated by prediction behavior of model. The
full model, with estimated parameters and state variables at t = 1500 ms, was then
integrated forward for the remainder of the data epoch with the same injected current
that was presented to the real neuron. One set of experimental data is synchronized as
long as the prediction is identical with the recordings in experiments. (Fig. 1)

3 Reduction of Complex Model
An ideal reduction scheme is the one which produces the same dynamics as the ref-
erence model for equivalent parameter values. Insofar as our reduction preserves the
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Figure 1: Data assimilation of HVc neuron model with experimental data: first 1500
ms data is used to estimate all the unobserved variables and unknown parameters, black
line is experimental recording and cyan line is the result of synchronization. The last
time step variable values are used as initial condition and fix parameters with estimated
results, integrate full model and get the prediction (magenta line).

set of ionic currents in the reference model, we would like these currents to be simi-
lar in the two models. In terms of the function of the neuron within a network, only
the temporal behavior of V (t) is important because this is the only variable which is
responsible for interactions among neurons. Hence, from this point of view, an ideal
reduced model should have the same solutions, V (t), as the solution of the original
one for same parameter values. In relating the two models, there should be no change
in the membrane potential V (t). Unfortunately, it is usually impossible to find such a
reduced model, and we formulate weaker requirements for a good reduction scheme.

It is assumed that all the parameters are fixed throughout the whole procedure of
reduction. Hence, the effects of changing the parameters of the reference model is not
tested in this project. This assumption is reasonable since all parameters of a single
neuron within a functional network must be estimated from experimental data.

Kepler et al. [3] proposed a systematic strategy, the method of equivalent potentials,
for the reduction of reference model. Since the equilibrium values of activation or
inactivation variables are sigmoid functions of the membrane potential, these variables
can be converted to equivalent potentials Uj defined by the equation

xj = xj∞(Uj) i.e. Uj = x−1j∞(xj)

Here x−1j∞ denotes the inverse function of xj∞. If several equivalent potentials Uj be-
have in a similar way under different conditions, a good approximation is to combine
them together and represent them as one variable. A necessary condition for this group-
ing of variables is that their dynamics have similar time scales, i.e. the time constant are
close. This method of combining several equivalent potentials into one is not unique.
? ] chose U by mimicking the time dependence of membrane potential equation in
reference model. Kepler et al. [3] make a new representative equivalent potential taken
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as a weighted average over all members of the group. Those weight coefficients are
optimized to ensure the right value of the equilibrium potential at all values of external
current and very nearly the correct stability and bifurcation characteristics. In the fol-
lowing procedure, we only choose one member of each group to represent all of them
in order to test the effectiveness this method.

The equivalent potentials for activation and inactivation variables, compared with
the membrane potential are presented in Fig. 2. The injected current is the same with
Fig. 7. Equivalent potentials are considered as similar if their minimal and maximal
values and their rise and fall times are close. Similarity can be seen between Um

and Un, since gating variables m and n are the fastest two among 11 variables, with
time constant τ = 0.01 ∼ 0.03 ms. Uh, Uu that respond more slowly than Um, Un, are
responsible for the post-discharge refractoriness. They have time constant τ = 0.2 ∼ 1
ms. Ub, Up, Uq, Us have small amplitude oscillation with time constant of order 101 ms.
Ur, Ut, Uz do not exhibit large amplitude oscillation since their time constants are of
the order 102 ∼ 103 ms. Therefore, 11 variables are regrouped into four categories as
plotted in Fig. 2.

We have grouped the variables according to the similarities of their dynamics:

1. The sodium activation variables m, n in transient and persistent sodium cur-
rents, whose time scales are much faster than all the other activation and inacti-
vation variables, which are considered as instantaneous: m(t) = m∞(V (t)) and
n(t) = n∞(V (t))

2. Sodium inactivation h and slow potassium activation u response much lower
than m,n, but much faster than other variables. The remarkable characteristic
is that their equivalent potentials miss all the peaks of spikes. Here we keep Uh

since sodium current is the most important current component. And the slow
potassium activation u is taken as a function of Uh, the equivalent potential of
the sodium inactivation variable: u = u∞(Uh).

3. Gating variables b, p, q, s seem like have similar shapes that they increase when
neuron is spiking and decrease when neuron is hyperpolarized. The trajectory of
Uq looks different than those of the other three, as it doesn’t go to the bottom of
membrane potential at around 500 ms, since its half maximal voltage is different
from the other three’s. They are reduced to s by b = b∞(Us), p = p∞(Us),
q = q∞(Us) This reduction is justified that the small change in gating variable
doesn’t make much difference in their corresponding currents.

4. The equivalent potential of r, t, z is much slower than all the other variables.
Thus, they were held constant and regarded as a parameter. The average values
over time are chosen for each of them: r = r∞(Ūr), t = t∞(Ūt), z = z∞(Ūz)

Simply put, the dynamics of the combined variable is governed by the equation of mo-
tion of the most important variable in the group, i.e. the variable which contributes the
most to changes in V (t). This can be determined by comparing maximum conduc-
tance. After the above reduction, the remaining variables are h, s.
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Therefore the reduced model has three variables (V, h, s) instead of the original 12.
The equations defining the reduced model are the following:

dV

dt
=

1

Cm

(
INa + IK + Ih + ICa + ILeak +

Iinj
ISA

)
(9)

INa = [gNaTm
3
∞(V )h+ gNaPn∞(V )](ENa − V ) (10)

IK = [gKA1
b4∞(Us) + gKA2

p4∞(Us)q∞(Us) + gK3
u∞(Uh)](EK − V ) (11)

Ih = ghz∞(Ūz)(−43− V ) (12)

IK = [gCaHr
2
∞(Ūr) + gCaLs

2t∞(Ūt)](ECa − V ) (13)

dxj
dt

=
xj∞(V )− xj

τj(V )
x = {h, s} (14)

x∞,j =
1

2

[
1 + tanh

(
V − V1/2,j

κj

)]
(15)

τj(V ) = τ0,j + τmax,j

[
1− tanh2

(
V − V1/2,j

σj

)]
(16)

4 Principal Component Analysis
We also looked at reducing the dimensionality of our model using principal component
analysis (PCA). PCA is traditionally used to isolate the main degrees of variance in
a dataset so we hoped it could reveal something about the nature of our model. We
formulated our PCA problem by taking V (t) and each Ux(t) as dimensions in a 12
dimensional space. Thus each moment in time represents a point in this 12 dimensional
space. So, taking all the data points in the time series from our reference model fit to an
epoch of experimental data, to try and capture the number of degrees of freedom in the
model. Performing PCA on the data yields the projection matrix, P from the equivalent
potential space into the principal component space as well as the amount of variance
each principal component is responsible for. The full list of variances are available in
table 1, but the first two principal components represent 61.9% and 22.3% of variance
whereas the last principal component explained only 7.4 · 10−5% of the variance. To
see how well our principal components describe our data we can then project the time
series into principal component space using P , discard one of the dimensions by setting
it to 0 and projecting back into potential space using P−1. This is demonstrated in Fig.
3 and as we expect, even using only a couple principal components the reconstructed
potential looks quite similar to the actual potential. We also notice that the differences
are most noticeable at the peak of the action potential. This is due to the fact that in our
data set, not much time is spent at the peak of an action potential so PCA doesn’t have
many examples of for it to include in its summary. It may be that the action potential
peaks are undersampled using PCA.

This only indicates that the model spends most of its time approximately near the
lower dimensional space defined by the first few principal components. This doesn’t
say that the model doesn’t need all the degrees of freedom it uses to accurately predict
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the behavior of the neuron. To do this, we try to integrate the differential equation while
constraining it to the reduced dimensions. Since the differential equations are defined
in the space of the gating variables and membrane potential, we choose to integrate in
this space. In order to constrain it to the reduced principal component space we add a
binding term to the calculated derivatives. Each time we calculate the derivative, dx,
we calculate the equivalent potential, y = f(x), of the given membrane gating values,
x. Then we project y into the principal component space by z = Py and filter out the
less important principal components, by setting their values to 0 to get z̄. Then we go
back to the equivalent potential space by ȳ = P−1z̄. We calculate the derivative by
converting ȳ to x̄ = f−1(ȳ) and calculating dx̄ using our original differential equa-
tions. Then by differentiating f−1(y) and applying it to the difference between y and
ȳ, we bind the solution to the reduced dimension space. The calculated derivative we
use for our ordinary differential equation solver is dx = dx̄+ f−1′(η(y − ȳ)). Where
η is a binding parameter that determines how strongly the path is constrained to the
reduced principal component space. Using a η about equal to 1 over the timestep of
.0001 ms seemed to work somewhat, however the model is not particularly sensitive to
η.

As expected when we run the algorithm with a complete reconstruction, it perfectly
reconstructs integration provided by the reference model. However, when we remove
a single principal component, which accounts for only 7.4 · 10−5% of the variance, the
integrated path differs quite a bit from our reference model as can be seen in Fig 4.
Here it can be noted that the reduced model is much more sensitive to initial conditions
because whereas our reference model quickly returns to its resting state, the atypical
initial values used don’t lie in the reduced principal component space making it more
difficult to reach the resting state. The spiking behavior also differs slightly for the
aforementioned reasons. Interestingly, at around 450 ms the limited model fits the
recorded membrane potential better than our reference model. While the reference
model generates a series of minispikes, the reduced model behaves more similarly to
the rough resting state of the actual neuron. Overall, however, it was surprising that
removal of a single principle component resulted in so much of a difference in the
behavior of the model. In fact, removal of a second principal component, caused the
integration to fail and we were unable to complete the integration as shown in Fig 5.

This result was quite surprising because the eleventh principal component explained
only 2.1 · 10−3% of the variance in the data. However, when you compare this value
to the 7.4 · 10−5% explained by the twelfth principal component which resulted in
significant differences, It makes a bit more sense.

5 Discussion
To assess the quality of the reduced model, we compared it with the reference model
using the same initial condition and same parameters. Firstly, we compared the same
data set that we used for reduction to see whether reduced model can repeat the be-
havior. We can see from Fig. 6. The trajectory of voltage in reduced model doesn’t
overlap that of reference model. Especially at the peak of spikes, reduced model are
much higher than reference model. As we retrieved back to reference from reduced
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Table 1: Percent of variance explained by each principal component. For example,
removing only the 12th principal component should only remove 7.4 · 10−5 % of the
variance of our data.

Principal Variance
Component Explained (%)

1 62.9
2 22.3
3 11.0
4 2.6
5 1.2
6 0.45
7 0.28
8 0.22
9 4.8 · 10−2

10 4.1 · 10−2

11 2.1 · 10−3

12 7.4 · 10−5

model, we find this big error comes from the reduction of gating variables h and u. As
we can see from Fig. 2.b, the maximals decrease in order V , Uu, Uh. If we simply re-
place Uu with Uh, it will make great difference in membrane voltage V . Here we used
principal component analysis to find a linear combination of Uh and V to represent Uu.
The result we got using the PCA analysis tool in python matplotlib library is that Uu

can be expressed as Uu = 0.5V + 0.5Uh. After that, the behavior of reduced model
has been improved a lot. (Fig. 7) It also tells us this method might fail in some special
case.

An ideal reduced model should have the same temporal behavior of V (t), as that
of the original one for same parameter values and initial conditions under arbitrary in-
jected current. Reduced model is also tested with arbitrary injected current, the results
are in excellent agreement with experimental data. (Fig. 8)

6 Summary
We have produced a simplification of this model that has three-dimensional phase by
using the method of equivalent potentials, suggested by Kepler et al to combine several
dynamical variables with similar time scales. Phase-dimensionality of reference model
is successfully reduced from 12 to 3. Membrane potentials have identical behavior in
reference and reduced model, and it holds for arbitrary injected current under certain
parameters. Although PCA initially seemed a promising lead towards understanding
the reduction of our model, it turns out PCA had trouble dealing with the non-linearities
in our differential equations, limiting its usefulness.
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A Complete Model and Parameters Values
The complete set of model equations that are used for the optimization procedure,
including the synchronization-inspired regularization term are given here.

dy1/dt =((p2y
3
2y3 + p3y4)(p4 − y1) + (p5y

4
5 + p6y

4
6y7 + p7y8)(p8 − y1)

+ (p71y
2
9 + p72y

2
10y11)19.2970673(p11 − 0.0001 exp(y1/13))/GHK

+ p9(p10 − y1) + p12y12(−43− y1) + Iinj/p13)/p1 + γ(Vdata − y1)

dy2/dt =0.5(1 + tanh((y1 − p14)/p15)− 2y2)/(p17 + p18(1− tanh2((y1 − p14)/p16)))

dy3/dt =0.5(1 + tanh((y1 − p19)/p20)− 2y3)/(p22 + p23(1− tanh2((y1 − p19)/p21)))

dy4/dt =0.5(1 + tanh((y1 − p24)/p25)− 2y4)/(p27 + p28(1− tanh2((y1 − p24)/p26)))

dy5/dt =0.5(1 + tanh((y1 − p29)/p30)− 2y5)/(p32 + p33(1− tanh2((y1 − p29)/p31)))

dy6/dt =0.5(1 + tanh((y1 − p34)/p35)− 2y6)/(p37 + p38(1− tanh2((y1 − p34)/p36)))

dy7/dt =0.5(1 + tanh((y1 − p39)/p40)− 2y7)/(p42 + p44 + 0.5(1− tanh(y1 − p39))

· (p43(1− tanh2((y1 − p39)/p41))− p44))

dy8/dt =0.5(1 + tanh((y1 − p45)/p46)− 2y8)/(p48 + p49(1− tanh2((y1 − p45)/p47)))

dy9/dt =0.5(1 + tanh((y1 − p50)/p51)− 2y9)/(p53 + p54(1− tanh2((y1 − p50)/p52)))

dy10/dt =0.5(1 + tanh((y1 − p55)/p56)− 2y10)/(p58 + p59(1− tanh2((y1 − p55)/p57)))

dy11/dt =0.5(1 + tanh((y1 − p60)/p61)− 2y11)/(p64 + p65(1 + tanh((y1 − p60)/p62))

· (1− tanh((y1 − p60)/p63))(1− tanh(y1 − p60) tanh((1/p62 + 1/p63)(y1 − p60)))

/(1 + tanh((y1 − p60)/p62) tanh((y1 − p60)/p63)))

dy12/dt =0.5(1 + tanh((y1 − p66)/p67)− 2y12)/(p69 + p70(1− tanh2((y1 − p66)/p68)))

(17)

Where the GHK expansion is given by:

GHK =(1 + y1/26(1 + y1/39(1 + y1/52(1 + y1/65(1 + y1/78(1 + y1/91(1 + y1/104

(1 + y1/117(1 + y1/130(1 + y1/143(1 + y1/156(1 + y1/169(1 + y1/182(1 + y1/195

(1 + y1/208(1 + y1/221(1 + y1/234(1 + y1/247(1 + y1/260(1 + y1/273(1 + y1/286

(1 + y1/299(1 + y1/312(1 + y1/325))))))))))))))))))))))))
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reduced to V

reduced to h

reduced to s

reduced to ∅

a)

b)

c)

d)

Figure 2: Equivalent potentials (green dash line) of 11 gating variables compared with
membrane potential (red solid line). They are classified into four categorizes according
to their constant rate τ−1.
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Figure 3: Reconstruction of the membrane potential using varied amounts of princi-
pal components (blue) compared to the membrane potential of the reference model.
As expected, using all the principal components completely reconstructs the reference
model’s estimate, and as you reduce the principal components it reduces the similarity
to the reference model’s membrane potential, however, even using just a single princi-
pal component, the membrane potential is still somewhat recognizable.
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Figure 4: Reference model constrained to 11 of 12 principal components. Constraint
method described in detail in section 4.

Figure 5: Reference model constrained to 10 of 12 principal components. Constraint
method described in detail in section 4. The ordinary differential equation solver was
unable to integrate this differential equation, perhaps because of the stiffness of the
problem.
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Figure 6: Preliminary result of reduced model: We combine all equivalent potential
variables simply by replacing all of them by one of them. Note that the peak poten-
tial achieved by action potentials is lower in the reduced model than that of reference
model.

Figure 7: Comparison of reference model and reduced model: data is obtained by
integrating the two models using the same initial condition and same parameters.
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Figure 8: Comparison of reduced model data and experimental data: initial condition is
found using the first 100 ms data and the rest of the data is integrated using the reduced
model
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Table 2: The complete list of optimization bounds and model parameter estimates.

param param lower upper neuron neuron neuron
number ‘name’ bound bound N1 N2 N3
p1 Cm 0.900 1.100 1.100 1.032 1.035
p2 gNaT 5.000 170.000 7.545 85.364 9.736
p3 gNaP 0.000 20.000 0.008 0.086 0.075
p4 ENa 45.000 55.000 55.000 55.000 55.000
p5 gKA1 0.000 80.000 0.096 0.216 0.000
p6 gKA2 0.000 80.000 5.687 14.708 1.074
p7 gKc 0.000 12.000 0.438 0.191 6.482
p8 EK -85.000 -70.000 -75.001 -85.000 -85.000
p9 gL 0.010 0.600 0.010 0.036 0.047
p10 EL -65.000 -48.000 -65.000 -65.000 -65.000
p11 CaExt 0.010 9.000 0.020 9.000 8.996
p12 gH 0.000 10.000 0.017 0.011 0.000
p13 Isa 0.015 0.250 0.038 0.081 0.078
p14 amV1 -45.000 -15.000 -34.738 -18.495 -38.400
p15 amV2 0.500 25.000 21.682 22.457 17.327
p16 amV3 0.500 25.000 0.500 0.500 0.500
p17 tm0 0.010 0.700 0.010 0.194 0.010
p18 epsm 0.012 7.000 0.012 0.158 0.012
p19 ahV1 -75.000 -35.000 -43.132 -38.452 -57.314
p20 ahV2 -25.000 -0.500 -9.400 -4.487 -25.000
p21 ahV3 5.000 25.000 6.401 22.344 5.000
p22 th0 0.020 2.000 0.554 0.207 0.841
p23 epsh 1.000 30.000 30.000 4.427 21.173
p24 anV1 -69.000 -29.000 -64.537 -37.719 -57.822
p25 anV2 5.000 25.000 5.000 5.349 11.042
p26 anV3 5.000 25.000 25.000 5.194 25.000
p27 tn0 0.020 2.000 2.000 0.020 1.088
p28 epsn 0.012 7.000 7.000 7.000 0.012
p29 abV1 -69.000 -21.000 -67.970 -54.343 -67.597
p30 abV2 5.000 25.000 6.734 15.528 24.998
p31 abV3 5.000 25.000 7.908 5.000 24.992
p32 tb0 0.020 2.000 2.000 0.052 1.998
p33 epsb 1.000 30.000 30.000 1.000 29.979
p34 apV1 -90.000 -21.000 -52.893 -41.932 -66.958
p35 apV2 5.000 48.000 13.597 10.972 19.837
p36 apV3 5.000 48.000 11.528 48.000 45.659
p37 tp0 0.020 2.000 0.020 0.020 2.000
p38 epsp 1.000 30.000 1.838 1.000 30.000
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Table 3: (cont.) The complete list of optimization bounds and model parameter esti-
mates.

param param lower upper neuron neuron neuron
number ‘name’ bound bound N1 N2 N3
p39 aqV1 -90.000 -35.000 -66.425 -52.586 -73.699
p40 aqV2 -39.000 -5.000 -30.417 -11.517 -24.863
p41 aqV3 -39.000 -5.000 -39.000 -20.389 -5.000
p42 tq0 0.020 2.000 2.000 1.989 0.020
p43 epsq 0.500 100.000 68.490 100.000 0.663
p44 deltasq 0.000 30.000 2.113 0.000 22.460
p45 auV1 -15.000 40.000 -15.000 -15.000 5.976
p46 auV2 5.000 65.000 65.000 65.000 37.251
p47 auV3 5.000 70.000 70.000 20.202 6.190
p48 tu0 0.020 55.000 55.000 0.020 1.106
p49 epsu 1.000 150.000 150.000 128.333 2.561
p50 arV1 -56.000 -8.000 -55.999 -49.049 -55.998
p51 arV2 5.000 49.000 48.995 29.827 48.991
p52 arV3 5.000 55.000 54.990 54.855 54.909
p53 tr0 0.020 2.000 1.966 0.020 1.863
p54 epsr 1.000 295.000 294.917 6.273 294.835
p55 asV1 -80.000 -35.000 -71.954 -44.457 -71.213
p56 asV2 5.000 39.000 38.987 30.094 20.336
p57 asV3 5.000 57.000 56.983 22.726 57.000
p58 ts0 0.020 2.000 1.975 0.020 2.000
p59 eps5 1.000 150.000 149.945 110.617 19.396
p60 atV1 -90.000 -55.000 -72.996 -56.002 -55.000
p61 atV2 -34.000 -5.000 -33.759 -7.789 -34.000
p62 atV3 3.000 55.000 54.853 55.000 55.000
p63 atV4 3.000 55.000 54.824 4.362 55.000
p64 tx0 5.000 190.000 189.147 59.808 190.000
p65 epst 0.500 7000.000 6959.019 7000.000 7000.000
p66 azV1 -90.000 -40.000 -89.061 -63.231 -67.150
p67 azV2 -40.000 -5.000 -6.416 -5.000 -38.150
p68 azV3 5.000 40.000 13.075 40.000 38.297
p69 tz0 0.020 2.000 2.000 2.000 1.029
p70 epsz 100.000 2000.000 2000.000 2000.000 1925.350
p71 gCaL 0.000 10.000 0.000 0.010 0.000
p72 gCaT 0.000 10.000 0.000 0.003 0.004
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