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Abstract 

Spinal stimulation for neuropathic treatment was modeled by incorporating and inhibitory 
junctions and a volume conductor into Hodgkin-Huxley and Frankenhaeuser-Huxley axon 
models. Results indicate successful merging of the models at low resistivity values  but also 
show that these two mechanisms operate independently of one another. At high resistivity 
values, the model no longer produces reliable results, most likely due to the effect of 
capacitive and inductive forces that are produced by thick layers of tissue.  

 

1 Introduction  

Stimulation of nerves using electrical currents has become one of the most effective 
therapies for Spinal Cord Injuries (SCI) [1]. Some of the spinal cord injuries cannot be 
treated with opioid and oral medicines. Two major groups of pain can be developed after 
spinal cord injuries, nociceptive and neuropathic pains. Neuropathic pain is a chronic pain 
due to the nerve damage which results from any type of lesion including infectious, 
neoplastic, or vascular lesions.  These damaged nerves can signal other nerves incorrectly 
which results in dysfunction of the nervous system at various levels ranging from the dorsal 
horn to the brain [3]. CNS related neuropathic pain is often difficult to relieve. The patients 
with neuropathic pain usually are offered by various pharmacological treatments but despite 
having the numerous treatment options, they often respond poorly to standard pain 
treatments. Thus, physician offer a combination of therapies to their patients which include 
spinal cord stimulation (SCS).  Spinal cord stimulator is an implantable device that generates 
a low voltage electrical signal and transmits it to the spinal nerve in the dorsal horn. This 
interrupts the conduction of the pain signal as it travels up to the brain and replaces it with a 
mild tingling sensation (paresthesia) [2]. The spinal cord stimulation system consisted of a 
pulse generator, two electrodes which are connected to the stimulator via conducting wires, 
and a remote control which allows the patient to set the parameters [4]. The patient often 
undergoes a trial implantation, and the permanent unit will be used only if trial procedure 
results in 50% of pain relief for the patients [4].  The physiological pathway of SCS has not 
been fully understood but many studies have shown an increased release of gamma amino 
butyric acid (GABA) during the stimulation. GABA is the main inhibitory neurotransmitter 
in the central nervous system and its level is significantly lower in patients with neuropathic 
pain. The decrease in the GABA level is often accompanied by an increase in the release of 
glutamine (excitatory neurotransmitter). SCS reduces the pain by balancing the release of 
GABA and glutamine [5].  It is important for the patients to know that SCS does not 
eliminate the pain, it reduces the intensity of pain which can vary for different patients.   SCS 
in combination with pharmacological treatments can relief the pain significantly and help the 
patient to perform their daily activities [3].  
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In this project we used computer modeling to simulate the mechanism of SCS and its effect 
on the conduction of pain signal with respect to electrode placement and GABA inhibition. 
We used Hodgkin-Huxley and Frankenhaeuser-Huxley model to study the difference 
between myelinated and non-myelinated axons and how they differ in inhibition of pain 
signal. Additionally, we studied the effect of electrode placement at different tissue layers 
using the volume conductor model.  

 

2 Methods  

In order to fully understand the effects of the each portion of the model on the output, the 
Hodgkin-Huxley (HH) and Frankenhaeuser-Huxley (FH) model were implemented in steps. 
First, both models were expressed as linear point models. Next, these same linear equations 
were used to implement the axon models into the HH and FH equations to generate models 
for the myelinated and unmyelinated axons. Finally, the volume conductor was integrated 
into both the HH and FH models followed by the incorporation of a secondary neuron and an 
inhibitory junction. 

2 .1   Ho dg kin  Hu xley  a nd  F ra nke nha euse r Hu xley  

The Hodgkin-Huxley (HH) model uses gating variables to describe the probability of an ion 
channel being open or closed. In the HH model the, gating variable 𝑛4  describes the slow 
activation of a potassium channel, 𝑚3 describes the fast activation of the sodium channel, 
and ℎ describes slow activation of the sodium channel. These gating variables’ closing and 
opening rates are given by rate equations α and β equations which are functions of 
membrane voltage and have coefficients obtained experimentally from an unmyelinated 
squid axon model [6]. 

The Frankenhaeuser Huxley model was a reformulation of the HH model that used the same 
concept of gating variable and rate equations α and β to formulate the model but obtained 
coefficients for the rate equations from a toad myelinated axon [7]. The fitting of this 
experimental data resulted in an additional gating variable 𝑝, which was termed the non-
specific permeability constant. This gating variable was a way to describe the movement of 
sodium in the previous node that would affect the next node’s membrane potential , allowing 
for the model to account for the effect of myelination between nodes and salutatory 
conduction [7,8]. Equations describing these equations can be seen in Appendix I.   

2 .2  The  po int  mo de l s  

HH is often used to model point neurons. These types of models do not incorporate axon 
length or various nodes allowing for analysis of simple spiking and interaction between two 
neurons rather than propagation of an action potential. Thus, to investigate the spiking 
difference between the FH and HH model, both were first were used to generate point 
models. When creating each of these models, equations describing the currents were 
linearized using a linear approximation of the Goldman-Hodgkin-Katz equation [9]: 

𝐽′𝑠 = 𝑔𝑠(𝑉𝑚 − 𝐸𝑠)  (1) 

𝑔𝑠 = 𝑃𝑠  
 𝑠 𝑜  𝑠 𝑖

 𝑠 𝑜− 𝑠 𝑖
 ln  

 𝑠 𝑜

 𝑠 𝑖
  (2) 

In order to simulate the interaction between two point neurons, an inhibitory junction was 
used with both FH and HH (figure 1) point models by introducing an inhibitory current 𝐽𝐺𝐴𝐵𝐴  
and GABA voltage dependent variable 𝑟 described by the equations below: 

𝐽𝐺𝐴𝐵𝐴 = 𝑔𝐺𝐴𝐵𝐴 ∗ 𝑟 ∗  𝑉 − 𝐸𝐶𝑙  (3) 

𝑑𝑟

𝑑𝑡
= 𝛼𝑟 ∗  

𝑇𝑚𝑎𝑥  

1+exp  −
𝑉−𝑉𝑝

𝐾𝑝
 
 ∗ ( 1 − 𝑟 − 𝛽𝑟) ∗ 𝑟 (4) 

 

 



 

 

Figure 1: Point Neuron with Inhibitory Junction 

 

2 . 3   The  a xo n  mo de l s  

Incorporating axons into each model was done by adding nodes to the voltage equations 
along with the axonal area (given by 𝜋𝐿∆𝑥), and the axoplasam resistance 𝑟𝑠  [10] a common 
method used to implement an axon in FH and  HH models.   

𝑑𝑉𝑛

𝑑𝑡
=

1

𝑐𝑚
(

1

𝑟𝑠𝜋𝐿∆𝑥
(𝑉𝑛−1 − 2𝑉𝑛 + 𝑉𝑛+1 −  𝐽𝑁𝑎 + 𝐽𝐾 + 𝐽𝐿 + 𝐽𝑝 𝑛)) (5) 

 

2 . 4   Vo lu me  c o nd ucto r  

The volume conductor is a means of describing the propagation of an external current 
through various types of tissue. The simplest form of this model is to consider one type of 
homogeneous tissue with a resistivity of 𝜌𝑡𝑖𝑠𝑠𝑢𝑒 . An electrode placed a vertical distance z and 
horizontal distance x would that thus provide additional voltage to each node V e (as seen in 
figure 2) is given by the equation: 

𝑉𝑒 =
𝜌

4𝜋
∗  𝑧2 + 𝑥2 −

1

2 ∗ 𝐼𝑒𝑥𝑡  (6) [10] 

This changes the axon model equation to: 

𝑑𝑉𝑛

𝑑𝑡
=

1

𝑐𝑚
∗

1

𝑟𝑠𝜋𝐿∆𝑥
 𝑉𝑛−1 − 2𝑉𝑛 + 𝑉𝑛+1 + 𝑉𝑒 ,𝑛−1 − 2𝑉𝑒 ,𝑛 + 𝑉𝑒 ,𝑛+1 −  𝐽𝑁𝑎 + 𝐽𝐾 + 𝐽𝐿 + 𝐽𝑝 𝑛  (7) 

 

 

Figure 2: Volume Conductor 

2 .5  Inh i b i to ry  j unct io n  

In order to create an inhibitory junction (shown in figure 3), an addition neuron with nodes 
was added to the model. In this model, the first neuron can be described by equation (7). In 
order to add an inhibitory current between the two neurons, J GABA , described in equations 3 
and 4, was added to the second neuron.  

𝑑𝑉2𝑛

𝑑𝑡
=

1

𝑐𝑚
(

1

𝑟𝑠𝜋𝐿∆𝑥
(𝑉2𝑛−1 − 2𝑉2𝑛 + 𝑉2𝑛+1 +  𝐽𝑁𝑎 + 𝐽𝐾 + 𝐽𝐿 + 𝐽𝑝 + 𝐽𝐺𝐴𝐵𝐴 𝑛)) (8) 

 



 

Figure 3: Inhibitory Junction between two myelinated neurons stimulated by a 
transcutaneous electrode 

 

3 Results  

3 .1  The  po int  mo de l s  

In the Hodgkin-Huxley point model the action potential is initiated around the membrane 
potential (-60mV) spikes up to 40 mV and returns to the resting membrane potential before 
another action potential occurs. In the FH model for the point, it can be seen that the action 
potential was fired around the membrane potential, but the spikes do not return to the 
membrane potential. This discrepancy is due to the permeability constant p, in which it takes 
to the account the additional Na ions generated from previous nodes.  Since this mode l does 
not have any nodes, the p gating variable simulates the release of sodium at a later time after 
the initial spike has already started to return to membrane potential (n,  m, h gates are 
closing). This release of sodium keeps the relative membrane potential positive at 
subsequent spikes. 

 

 

 

Figure 4: HH and FH Point Models 

In Figure 5 the effect of GABA was investigated. Here, it can be seen that release of GABA 
inhibited the action potentials from spiking in both HH and FH model. I n HH and FH model 
the conductivity of GABA (gGABA), which is related to the relative concentrations of 
GABA, was raised to 10 and 0.45 respectively in order for the action potential to be 
inhibited.  In HH model the gating variables m and n are more powerful in Jk and JNa, since 
they have the order of 3 and 4 respectively. This requires more GABA to be released in order 
for the action potential to be inhibited. In FH model however, the power of m and n is 2 and 
the permeability constant p of the excess sodium ions from previous nodes is effective after 
the gating variable, thereby inhibiting the action potential require less release of GABA.  
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Figure 5: HH and FH Point Neurons with Inhibitory Junction 

 

3 .2  The  A xo n  M o de l s  

In this part the axon model and the effect of myelination in propagation of action potential  
were investigated. As it can be seen in figure 6a, in the HH model, the action potential is 
propagated through the axon from node to node. Furthermore, due to the high order of the 
Na+ related gating variables, m and h, the initial node continues to spike but does not 
propagate after the initial spike. The FH model also shows propagation along the axon, 
however due to the myelination, the action potential propagated faster from node to node. 
Also the oscillatory behavior that is shown in the FH model is due to the excess sodium ions  
(p gating variable) from the previous nodes, which cause a little spike.  

 

Figure 6: The (a) Unmyelinated Axon and the (b) Myelinated Axon 

 

3 . 3  Vo lu me  Co nducto r  

By incorporating the volume conductor, the action potential is propagated fro m node to node 
in both HH and FH model. As it can be seen in the FH model the propagation is faster than 
HH model and that is due to the myelination. Also the oscillatory behavior that it can be seen 
in node 3 and 7 of the FH model is due to the influx of excess sodium ions from previous 
nodes. The effects of different tissues were investigated by changing the resistivity of the 
tissues such as fat and muscle, and the similar results were observed.  
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Figure 7:  The (a) Unmyelinated Axon and (b) Myelinated Axon stimulated through muscle 
tissue 

3 .4  Inh ib i to ry   

By incorporating the effect of GABA released from the first neuron after stimulation, the 
action potential is inhibited in second neuron as it is illustrated in figure 8. It can be seen 
that  in HH model the propagation stops after node 3 and the action potential is inhibited by 
firing to lower membrane potential values. In FH model however the effect of release of 
GABA is more dramatic, since the membrane potential is around the resting potential at 
negative values. Though these results incorporate the volume conductor, the axon, and 
GABA, the effect of GABA is similar to what was seen in the point model in section 3.1.  

 
 

Figure 8: Inhibited Neuron using (a) HH axon model and (b) FH model with a stimulus 
through muscle tissue. 

4 Conclusions 

In this paper, the commonly used Hodgkin-Huxley and Frankenhaeuser-Huxley models were 
investigated and implemented into a multidimensional model that incorporated neuron 
excitation through tissue using the volume conductor model, nodal propagation down 
myelinated and unmyelinated axons, and GABA induced inhibition. This study showed that 
these portions can be incorporated together to model spinal cord stimulation, allowing for 
simulation of various types of electrodes, subcutaneously implanted, that could be used to 
stimulate specific portions of the spinal cord. However, when resistivity in the volume 
conductor becomes too high, the model no longer accurately represents the physical 
phenomena, and thus, in order to use this model to simulate a transcutaneous stimulation, a 
mode detailed model for the volume conductor that takes into account conductance and 
inductance of each tissue layer, would be needed.  
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Ac kno w ledg me nts  

A MATLAB code from http://people.ece.cornell.edu by Amie Adams was modified to 
generate axon models.   
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Appendix I :  Equations   

Ho dg kin-Hu xley  mo de l ing : 

𝑑𝑉

𝑑𝑡
=

1

𝐶𝑚
∗ (𝐽𝑒𝑥𝑡 − 𝐽𝑁𝑎 − 𝐽𝐾 − 𝐽𝐿) 

Ra te  Equa t io ns  

𝛼𝑚 =  0.1 ∗
𝑉 + 45

1 − exp  −
𝑉 + 45

10
 
  

𝛽𝑚 =  4 ∗ exp  −
𝑉 + 70

18
   

𝛼ℎ =  0.07 ∗ exp  −
𝑉 + 70

20
  

𝛽ℎ =
1

1 + exp  
− 𝑉 + 40 

10
 

 

𝛼𝑛 = 0.01 ∗
𝑉 + 60

1 − exp  
−(𝑉 + 60)

10
 
 

𝛽𝑛 = 0.125 ∗ exp  −
𝑉 + 70

80
  

Current  Equa t io n:  

 

𝐽𝑁𝑎  =   𝑔𝑁𝑎  ∗  𝑚3 ∗ ℎ ∗  𝑉 −  𝐸𝑁𝑎   

𝐽𝐾   =   𝑔𝐾  ∗  𝑛^4 ∗  (𝑉 −  𝐸𝐾) 

𝐽𝐿 = 𝑔𝐿  ∗  (𝑉 −  𝐸𝐿) 

Ga t ing  Va r ia b le s :  

 

𝑑𝑚

𝑑𝑡
= 𝛼𝑚  𝑉 ∗  1 −𝑚 − 𝛽𝑚  𝑉 ∗ 𝑚 

𝑑ℎ

𝑑𝑡
= 𝛼ℎ 𝑉 ∗  1 − ℎ − 𝛽ℎ 𝑉 ∗ ℎ 

𝑑𝑛

𝑑𝑡
= 𝛼𝑛 𝑉 ∗  1 − 𝑛 − 𝛽𝑛 𝑉 ∗ 𝑛 

𝑑𝑉

𝑑𝑡
=

1

𝐶𝑚
∗ (𝐽𝑒𝑥𝑡 − 𝐽𝑁𝑎 − 𝐽𝐾 − 𝐽𝐿 − 𝐽𝑝) 

𝐽𝑁𝑎 = 𝑃 𝑁𝑎ℎ𝑚
2  
𝐸𝐹2

𝑅𝑇
 
 𝑁𝑎 𝑜 −  𝑁𝑎 𝑖 exp 𝐸𝐹 𝑅𝑇  

 1 − exp 𝐸𝐹 𝑅𝑇   
 

𝐽𝐾 = 𝑃 𝐾𝑛
2  
𝐸𝐹2

𝑅𝑇
 
 𝐾 𝑜 −  𝐾 𝑖 exp 𝐸𝐹 𝑅𝑇  

 1 − exp 𝐸𝐹 𝑅𝑇   
 

𝐽𝑃 = 𝑃 𝑁𝑎𝑃
2  
𝐸𝐹2

𝑅𝑇
 
 𝑁𝑎 𝑜 −  𝑁𝑎 𝑖 exp 𝐸𝐹 𝑅𝑇  

 1 − exp 𝐸𝐹 𝑅𝑇   
 



𝐽𝐿 = 𝑔𝐿  ∗  (𝑉 −  𝐸𝐿) 

Linea r iza t io n:  

𝐽′𝑠 = 𝑔𝑠(𝑉𝑚 − 𝐸𝑠) 

𝑔𝑠 = 𝑃𝑠  
 𝑠 𝑜 𝑠 𝑖
 𝑠 𝑜 −  𝑠 𝑖

 ln(
 𝑠 𝑜
 𝑠 𝑖

) 

Fra nke nha euse r -Huxl ey  mo de l i ng :  

 

Ra te  Equa t io ns :  

𝛼𝑚 =
𝐴1(𝑉 − 𝐵1)

1 − exp  
𝐵1 − 𝑉
𝐶1

 
 

𝛽𝑚 =
𝐴2(𝐵2 − 𝑉)

1− exp  
𝑉 − 𝐵2

𝐶2
 
 

𝛼ℎ =  
𝐴3(𝐵3 − 𝑉)

1 − exp  
𝑉 − 𝐵3

𝐶3
 
 

𝛽ℎ =
𝐴4

1 + exp  
𝐵4 − 𝑉
𝐶4

 
 

𝛼𝑛 =
𝐴5(𝑉 − 𝐵5)

1− exp  
𝐵5 − 𝑉
𝐶5

 
 

𝛽𝑛 =
𝐴6(𝐵6 − 𝑉)

1 − exp  
𝑉 − 𝐵6

𝐶6
 
 

𝛼𝑃 =
𝐴7(𝑉 − 𝐵7)

1− exp  
𝐵7 − 𝑉
𝐶7

 
 

𝛽𝑃 =
𝐴8(𝐵8 − 𝑉)

1 − exp  
𝑉 − 𝐵8

𝐶8
 
 

Vo lu me  Co n ducto r :  

𝑑𝑉𝑛
𝑑𝑡

=
1

𝑐𝑚
(

1

𝑟𝑠𝜋𝐿∆𝑥
(𝑉𝑛−1 − 2𝑉𝑛 + 𝑉𝑛+1 + 𝑉𝑒 ,𝑛−1 − 2𝑉𝑒 ,𝑛 + 𝑉𝑒 ,𝑛+1 −  𝐽𝑁𝑎 + 𝐽𝐾 + 𝐽𝐿 + 𝐽𝑝 𝑛) 

𝑉𝑒 =
𝜌𝑒
4𝜋

∗  𝑧2 + 𝑥2 
−1
2 ∗ 𝐼𝑒𝑥𝑡 (𝑡) 

GAB A:  

𝑑𝑉2𝑛
𝑑𝑡

=
1

𝑐𝑚
(

1

𝑟𝑠𝜋𝐿∆𝑥
(𝑉2𝑛−1 − 2𝑉2𝑛 + 𝑉2𝑛+1 +  𝐽𝑁𝑎 + 𝐽𝐾 + 𝐽𝐿 + 𝐽𝑝 + 𝐽𝐺𝐴𝐵𝐴 𝑛) 

𝐽𝐺𝐴𝐵𝐴 = 𝑔𝐺𝐴𝐵𝐴 ∗ 𝑟 ∗  𝑉 − 𝐸𝐶𝑙  

𝑑𝑟

𝑑𝑡
= 𝛼𝑟 ∗

 

 
𝑇𝑚𝑎𝑥  

1 + exp  −
𝑉 − 𝑉𝑝
𝐾𝑝

 
 

 ∗ ( 1 − 𝑟 − 𝛽𝑟) ∗ 𝑟 



Appendix II:  FH Point Model  
close all;clear all; clc 
% Constants 
C_m = 2.0;% membrane capacitance, in uF/cm^2 
V_t=26.7 
%Ion concentrations mM 
C_o_Na=114 
C_i_Na=13 
C_o_K=2.5 
C_i_K=12 

  
Ri=110 %ohmcm axoplasam resistance 
E_L =0.026%leak current potential mV 
E_r= -70 %rest potential mV 
E_Na = V_t*log(C_o_Na/C_i_Na) % Nernst reversal potentials, in mV 
E_K  = V_t*log(C_o_K/C_i_K) 
E_P = V_t*log(C_o_Na/C_i_Na) 
%permeabilities  
P_Na=8; %cm/ms 
P_p=0.54; %cm/ms 
P_K=1.2; %cm/ms 
%g values 
g_K=P_K*((C_o_K*C_i_K)/(C_o_K-C_i_K))*log(C_o_K/C_i_K); 
g_Na=P_Na*((C_o_Na*C_i_Na)/(C_o_Na-C_i_Na))*log(C_o_Na/C_i_Na) 
g_L=0.3; 
g_P=P_p*((C_o_Na*C_i_Na)/(C_o_Na-C_i_Na))*log(C_o_Na/C_i_Na); 
%FH Constants 
A1=0.36;%1/ms 
B1=22; %mV 
C1=3; %mV 
A2=0.4; B2=13; C2=20; 
A3=0.1; B3=-10; C3=6; 
A4=4.5; B4=45; C4=10; 
A5=0.02; B5=35; C5=10; 
A6=0.05; B6=10; C6=10; 
A7=0.006; B7=40; C7=10; 
A8=0.09; B8=-25;  C8=20; 
%  
% % %gating variables 
alpha_m= @(V)    (A1*(V-B1))/(1-exp((B1-V)/C1)); 
beta_m=  @(V)    (A2*(B2-V))/(1-exp((V-B2)/C2)); 
alpha_h= @(V)    (A3*(B3-V))/(1-exp((V-B3)/C3)); 
beta_h=  @(V)     A4/(1+exp((B4-V)/C4)); 
alpha_n= @(V)    (A5*(V-B5))/(1-exp((B5-V)/C5)); 
beta_n=  @(V)    (A6*(B6-V))/(1-exp((V-B6)/C6)); 
alpha_p= @(V)    (A7*(V-B7))/(1-exp((B7-V)/C7)) 
beta_p=  @(V)    (A8*(B8-V))/(1-exp((V-B8)/C8)) 

  

  
alpha_r= 5; %m/M*ms 
beta_r = 0.18;  
T_max= 1.5; %mM 
K_p=5; %mV 
V_p=7; %mV 
E_Cl=-80;  
T_max= 1; %mM 



K_p=5; %mV 
V_p=7; %mV 
conc_T= @(V) T_max./(1+exp(-(V-V_p)./K_p)); 
g_GABA= .045 
% Membrane currents (in uA/cm^2) HH 

  
J_Na =  @(V,m,h) g_Na .* m.^2*h*(V - E_Na); 
J_K  =  @(V,n)  g_K .* n.^2 .*              (V - E_K); 
J_L  =  @(V)    g_L .* (V - E_L); 
J_P  =  @(V,p)  p^2*g_P*(V-E_Na); 
J_GABA= @(V,r)  g_GABA*r*(V-E_Cl); 
J_ext=0; 

  
%Initial Conditions 
m0=0.0005; 
h0=0.8249; 
n0=0.0268; 
p0=0.0049; 
V0=-70; 

  
%time vector s 
t_start = 0; 
t_stop =100; 
t_step = 1; 

  
%differential gating equations 
dmdt=@(V,m) alpha_m(V)*(1-m)-beta_m(V)*m; 
dhdt=@(V,h) alpha_h(V)*(1-h)-beta_h(V)*h;  
dndt=@(V,n) alpha_n(V)*(1-n)-beta_n(V)*n; 
dpdt=@(V,p) alpha_p(V)*(1-p)-beta_p(V)*p; 
dVdt=@(V,m,h,n,p,r) ((J_ext-J_Na(V,m,h)-J_K(V,n)-J_L(V)-

J_P(V,p)))/C_m; 
dmdt2=@(V,m) alpha_m(V)*(1-m)-beta_m(V)*m; 
dhdt2=@(V,h) alpha_h(V)*(1-h)-beta_h(V)*h;  
dndt2=@(V,n) alpha_n(V)*(1-n)-beta_n(V)*n; 
dpdt2=@(V,p) alpha_p(V)*(1-p)-beta_p(V)*p; 
drdt2=@(V,r) alpha_r.*(T_max./(1+exp(-(V-V_p)./K_p))).*(1-r)-

beta_r.*r; 
dVdt2=@(V,m,h,n,p,r) (J_ext-J_Na(V,m,h)-J_K(V,n)-J_L(V)-J_P(V,p)-

J_GABA(V,r))/C_m; 

  
IC=[V0 m0 h0 n0 p0 V0 m0 h0 n0 p0 8.7e-7]; 

  
dxdt = @(t, x) ... 
    [ ... 
    dVdt(x(1,:),x(2,:),x(3,:),x(4,:),x(5,:)); ... 
    dmdt(x(1,:),x(2,:));   ... 
    dhdt(x(1,:),x(3,:));   ... 
    dndt(x(1,:),x(4,:));   ... 
    dpdt(x(1,:),x(5,:));... 
    dVdt2(x(6,:),x(7,:),x(8,:),x(9,:),x(10,:), x(11,:)); ... 
    dmdt2(x(6,:),x(7,:));   ... 
    dhdt2(x(6,:),x(8,:));   ... 
    dndt2(x(6,:),x(9,:));   ... 
    dpdt2(x(6,:),x(10,:));... 
    drdt2(x(1,:),x(11,:));]; 



  
 [t, x] = ode23(dxdt, t_start:t_step:t_stop, IC); 

  
V = x(:,1); % the first column is the V values 
m = x(:,2); % the second column is the m values 
h = x(:,3); % the second column is the h values 
n = x(:,4); % the second column is the h values 
p = x(:,5); % the second column is the p values 
V2 = x(:,6); % the first column is the V values 
m2 = x(:,7); % the second column is the m values 
h2 = x(:,8); % the second column is the h values 
n2 = x(:,9); % the second column is the h values 
p2 = x(:,10); % the second column is the p values 
r = x(:,10); % the second column is the p values 
figure() 
plot(t,V) 
hold on 
plot(t,V2, 'r') 
ylim([0 60]) 
xlabel('t (ms)') 
ylabel('Vm (nV)') 
title('FH Point Nuerons: Inhibitory Junction') 

  
hold off 
figure() 
plot( t,r) 

  



Appendix III:  FH Model  with Volume Conductor and an 
Inhibitory Junction  

function main() 

DT = 0.00025; 

TMAX = 10; 

t = 0:DT:TMAX; 

 

VREST = -60; 

 

GNA = 254.87;        % mS/cm^2 

GK = 5.94;        % mS/cm^2 

GLEAK = 0.3;        % mS/cm^2 0.3 

GP = 17.2040; 

 

ENA = 57.9724;        % mV 

EK =-41.8820;        % mV 

ELEAK = 0.0260;        % mV 

EP = 57.9724; 

 

C_M = 1.0;        % uF/cm^2 

 

g_GABA= 10.5; 

E_Cl=-80;  

T_max= 1; %mM 

K_p=5; %mV 

V_p=7; %mV 

alpha_r= 5; %m/M*ms 

beta_r = 0.18;  

 

%set the axon properties 

specR = 90; % ohm cm 

dia = .05; % cm 0.05 

nodeDist = 0.05; %cm 

Raxon = specR*nodeDist/(pi*(dia^2)/4) ; % R=specR*length/area  

gAxon = 1000/Raxon ; %invert and convert to milliS 

nNodes = 4 ; 

nTime = length(t) ; 

 



INJECT_LIST = 0; 

z=0.1 %cm thickness to elecectrode 

I_ext=10 %current applied through electrode 

rho_e=200 

 

for j=1:nNodes 

x=j*nodeDist; 

        ve(j)=rho_e*I_ext*(1/(4*pi*(x^2+z^2)^(1/2))); 

end 

clear v  m  h  n % clear old varibles 

v = ones(nTime, nNodes)*VREST; % initial membrane voltage  

m = ones(nTime,nNodes).*alpha_m(v-VREST)./(alpha_m(v-VREST)+beta_m(v-VREST));        
%initial (steady-state) m 

h = ones(nTime,nNodes).*alpha_h(v-VREST)./(alpha_h(v-VREST)+beta_h(v-VREST));        
%initial (steady-state) h 

n = ones(nTime,nNodes).*alpha_n(v-VREST)./(alpha_n(v-VREST)+beta_n(v-VREST));        
%initial (steady-state) n 

p = ones(nTime,nNodes).*alpha_p(v-VREST)./(alpha_p(v-VREST)+beta_p(v-VREST)); 

v2 = ones(nTime, nNodes)*VREST; % initial membrane voltage  

m2 = ones(nTime,nNodes).*alpha_m(v-VREST)./(alpha_m(v-VREST)+beta_m(v-VREST));        
%initial (steady-state) m 

h2 = ones(nTime,nNodes).*alpha_h(v-VREST)./(alpha_h(v-VREST)+beta_h(v-VREST));        
%initial (steady-state) h 

n2 = ones(nTime,nNodes).*alpha_n(v-VREST)./(alpha_n(v-VREST)+beta_n(v-VREST));        
%initial (steady-state) n 

p2 = ones(nTime,nNodes).*alpha_p(v-VREST)./(alpha_p(v-VREST)+beta_p(v-VREST)); 

r2=  ones(nTime,nNodes).*8.7e-7; 

for i=2:length(t) 

    I = [INJECT_LIST, zeros(1,nNodes-1)] ; 

    M = m(i-1,:);        % get values from last time step 

    H = h(i-1,:);        % (hopefully this substitution makes 

    N = n(i-1,:);        % the following code a bit easier to read) 

    V = v(i-1,:); 

    P = p(i-1,:); 

     

    M2 = m2(i-1); % get values from last time step 

    H2 = h2(i-1); % (hopefully this substitution makes 

    N2 = n2(i-1); % the following code a bit easier to read) 

    P2 = p2(i-1,:); 

    R2 = r2(i-1,:); 

    V2 = v2(i-1, :); 



 

    gNa = GNA * M.^2 .* H ; 

    gK  = GK  * N.^2; 

    gP  = GP  * P.^2; 

     

    gNa2 = GNA * M2.^2 .* H2 ; 

    gK2  = GK  * N2.^2; 

    gP2  = GP  * P2.^2; 

     

   

 

   %  

 

    

 

    mdot = alpha_m(V-VREST).*(1-M) - beta_m(V-VREST).*M; 

    hdot = alpha_h(V-VREST).*(1-H) - beta_h(V-VREST).*H; 

    ndot = alpha_n(V-VREST).*(1-N) - beta_n(V-VREST).*N; 

    pdot = alpha_p(V-VREST).*(1-P) - beta_m(V-VREST).*P; 

    vdot = (I - gNa.*(V-ENA) - gK.*(V-EK) -gP.*(V-ENA)- GLEAK.*(V-ELEAK))/C_M; 

     

    mdot2 = alpha_m(V2-VREST).*(1-M2) - beta_m(V2-VREST).*M2; 

    hdot2 = alpha_h(V2-VREST).*(1-H2) - beta_h(V2-VREST).*H2; 

    ndot2 = alpha_n(V2-VREST).*(1-N2) - beta_n(V2-VREST).*N2; 

    pdot2 = alpha_p(V2-VREST).*(1-P2) - beta_m(V2-VREST).*P2; 

    rdot2=  alpha_r.*(T_max./(1+exp(-(V-V_p)./K_p))).*(1-R2)-beta_r.*R2; 

    vdot2 = (-g_GABA.*R2.*(V2-E_Cl) - gNa2.*(V2-ENA) - gK2.*(V2-EK) - GLEAK.*(V2-
ELEAK)-gP.*(V-ENA))/C_M; 

 

    for j=2:nNodes-1 

        vdot(j) = vdot(j) + gAxon * (V(j-1)-V(j)-V(j)+V(j+1)+ve(j-1)-ve(j)-ve(j)+ve(j+1)) ; 

        vdot2(j) = vdot2(j) + gAxon * (V2(j-1)-V2(j)-V2(j)+V2(j+1)) ; 

    end 

    vdot(1) = vdot(1) - gAxon * (V(2)-V(1)+ve(2)-ve(1)) ; 

    vdot(nNodes) = vdot(nNodes) + gAxon * (V(nNodes-1)-V(nNodes)) ; 

     

    vdot2(1) = vdot2(1) - gAxon * (V2(2)-V2(1)) ; 

    vdot2(nNodes) = vdot2(nNodes) + gAxon * (V2(nNodes-1)-V2(nNodes)) ; 

 



    m(i,:) = m(i-1,:) + mdot*DT;                % Euler integration 

    h(i,:) = h(i-1,:) + hdot*DT; 

    n(i,:) = n(i-1,:) + ndot*DT; 

    v(i,:) = v(i-1,:) + vdot*DT; 

    p(i,:) = p(i-1,:) + pdot*DT; 

    m2(i,:) = m2(i-1,:) + mdot2*DT;                % Euler integration 

    h2(i,:) = h2(i-1,:) + hdot2*DT; 

    n2(i,:) = n2(i-1,:) + ndot2*DT; 

    v2(i,:) = v2(i-1,:) + vdot2*DT; 

    p2(i,:) = p2(i-1,:) + pdot2*DT; 

    r2(i,:) = r2(i-1,:) + rdot2*DT; 

end 

 

figure(1);clf; 

cmap = jet(nNodes); 

%plot(t,v) 

for j=1:nNodes 

%   subplot(nNodes,1,j); 

    plot(t,v(:,j),'color',cmap(j,:)); 

    hold on 

    ylabel('v (mV)') 

    xlabel('t (ms)') 

    title('FH Myelinated Axon for 10 nodes') 

    %xlabel('t (msec)'); ylabel('v (mV)') 

    set(gca,'ylim',[-60 60]) 

     

      

end 

figure(2) 

for j=1:nNodes 

%   subplot(nNodes,1,j); 

    plot(t,v2(:,j),'color',cmap(j,:)); 

    hold on 

    ylabel('v (mV)') 

    xlabel('t (ms)') 

    title('FH Myelinated Axon for 10 nodes') 

    %xlabel('t (msec)'); ylabel('v (mV)') 

    set(gca,'ylim',[-60 60]) 



     

      

end 

figure(3) 

plot(t, r2) 

 

 

 

%get speed by finding peaks for each trace 

for j=1:nNodes 

    [vPeak(j),index(j)] = max(v(:,j)); 

end 

%m/sec = (cm/100)/(mSec/1000) 

10*nodeDist./(t(index(end-2))-t(index(end-3))) 

 

% % %gating variable functions 

 function am=alpha_m(v) 

 A1=0.36;%1/ms 

 B1=22; %mV 

 C1=3; %mV 

 am=zeros(size(v)); 

idx = find(v~=B1);   % HANDLE NORMAL (NON-SINGULAR) 
CASE 

  if(~isempty(idx)) 

   am(idx)= (A1.*(v(idx)-B1))./(1-exp((B1-v(idx))./C1)); 

  end 

  idx = find(v == B1);  % HANDLE SIGULARITY AT V=25.0  

  if(~isempty(idx)) 

  am(idx)= (A1)./(exp((B1-v(idx))./C1)); 

  end 

 function bm=beta_m(v) 

 A2=0.4; B2=13; C2=20; 

 bm= zeros(size(v)); 

 idx = find(v~=B2);   % HANDLE NORMAL (NON-SINGULAR) 
CASE 

  if(~isempty(idx)) 

   bm(idx)=(A2.*(B2-v(idx)))./(1-exp((v(idx)-B2)./C2)); 

  end 

  idx = find(v == B2);  % HANDLE SIGULARITY AT V=25.0  



  if(~isempty(idx)) 

  bm(idx)=(A2)./(exp((v(idx)-B2)./C2)); 

  end 

 function ah= alpha_h(v) 

 A3=0.1; B3=-10; C3=6; 

 ah= zeros(size(v)); 

 idx = find(v~=B3);   % HANDLE NORMAL (NON-SINGULAR) 
CASE 

  if(~isempty(idx)) 

  ah(idx)= (A3*(B3-v(idx)))./(1-exp((v(idx)-B3)./C3)); 

  end 

  idx = find(v == B3);  % HANDLE SIGULARITY AT V=25.0  

  if(~isempty(idx)) 

  ah(idx)= (A3)./(exp((v(idx)-B3)./C3)); 

  end 

function bh=beta_h(v) 

 A4=4.5; B4=45; C4=10; 

 bh= zeros(size(v)); 

 bh=  A4./(1+exp((B4-v)./C4)); 

 function an=alpha_n(v) 

 A5=0.02; B5=35; C5=10; 

 an=zeros(size(v)); 

 idx = find(v~=B5);   % HANDLE NORMAL (NON-SINGULAR) 
CASE 

  if(~isempty(idx)) 

  an(idx)=  (A5.*(v(idx)-B5))./(1-exp((B5-v(idx))./C5)); 

  end 

  idx = find(v == B5);  % HANDLE SIGULARITY AT V=25.0  

  if(~isempty(idx)) 

  an(idx)=  (A5)./(1-exp((B5-v(idx))./C5)); 

  end 

 function bn=beta_n(v) 

     A6=0.05; B6=10; C6=10; 

     bn=zeros(size(v)); 

     idx = find(v~=B6);   % HANDLE NORMAL (NON-SINGULAR) 
CASE 

  if(~isempty(idx)) 

   bn(idx)=(A6.*(B6-v(idx)))./(1-exp((v(idx)-B6)./C6)); 

  end 



  idx = find(v == B6);  % HANDLE SIGULARITY AT V=25.0  

  if(~isempty(idx)) 

   bn(idx)=(A6)./(exp((v(idx)-B6)./C6)); 

  end 

 function ap=alpha_p(v) 

A7=0.006; B7=40; C7=10; 

ap=zeros(size(v)); 

idx = find(v~=B7);   % HANDLE NORMAL (NON-SINGULAR) 
CASE 

  if(~isempty(idx)) 

   ap(idx)=(A7*(v(idx)-B7))./(1-exp((B7-v(idx))./C7)); 

  end 

  idx = find(v == B7);  % HANDLE SIGULARITY AT V=25.0  

  if(~isempty(idx)) 

    ap(idx)=(A7)./(exp((B7-v(idx))./C7)); 

  end 

function bp=beta_p(v) 

A8=0.09; B8=-25;  C8=20; 

bp=zeros(size(v)); 

idx = find(v~=B8);   % HANDLE NORMAL (NON-SINGULAR) 
CASE 

  if(~isempty(idx)) 

   bp(idx)=(A8*(B8-v(idx)))./(1-exp((v(idx)-B8)./C8)); 

  end 

  idx = find(v == B8);  % HANDLE SIGULARITY AT V=25.0  

  if(~isempty(idx)) 

    bp(idx) = (A8)./(exp((v(idx)-B8)./C8)); 

  end 


