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Abstract 5 

In cortex, there are several electrically coupled inhibitory interneuronal 6 
networks which are thought to be critical to temporal coordination of 7 
cortical and hippocampal oscillations seen in EEG. This is because gap-8 
junction mediated networks have many properties, such as speed and 9 
bidirectionality, desirable for neural synchronization. Gap junctions 10 
exclusively connect GABAergic neurons of the same type, implying distinct 11 
functional roles for each type of inhibitory network. Using BRIAN, we built 12 
a model simulating Layer IV excitatory neurons, which receive thalamic 13 
input and synapse onto gap-junction coupled interlaminar inhibitory 14 
neurons, which in turn inhibit Layer VI excitatory neurons. The electrical 15 
coupling of the inhibitory layer drives synchronization of neuronal firing in 16 
Layer VI which is dependent on the topology the electrically connected 17 
inhibitory network. We investigated how lattice (nearest neighbor), random, 18 
and small world topologies effect synchronization. Small world networks 19 
occur when a percent of connections in a lattice network are rewired 20 
randomly, resulting in the path length L between any two neurons scaling 21 
with the logarithm of N. Small world networks are less likely to exist in 22 
systems where links arise mainly from spatial or temporal proximity. We 23 
found that small-world network topology for the gap-junction connected 24 
inhibitory network results in the highest correlation between spiking of 25 
neurons in the inhibited layer. 26 

 27 

1 Introduction 28 

The neocortex is the outermost layer of the human brain, containing 6 morphologically and 29 
functionally distinct layers, with layer IV receiving thalamic input and layer VI sending 30 
afferents to the thalamus. At rest, or without stimulation, excitatory networks exhibit 31 
independent and sparse firing. However, in recent years understanding the neuronal 32 
underpinnings of cortical rhythms has attracted significant attention. In the waking brain, 33 
small-amplitude EEG signals are largely asynchronous, with weak, intermittent synchrony 34 
exhibiting temporal and spatial selectivity ([1]-[2]). Single neurons seem to exhibit Poisson 35 
processes ([1]-[2]). Excitatory synchrony is a result of action potentials highly correlated in 36 
time, which is key for a variety of important neural mechanisms such as spike timing 37 
dependent plasticity, sensory coding, and gain modulation ([3]). Interplay between 38 
excitatory and inhibitory neocortical neurons is essential for synchronous activity ([3]-[4]). 39 
Synaptic inhibition likely sculpts the temporal activity patterns of cortical activity. In 1999, 40 
Gibson et al. found extensive gap junction coupling between inhibitory interneurons of the 41 
same type in neocortex. This suggests that these inhibitory networks have distinct, perhaps 42 



input specific, roles in temporally sculpting excitation through quick and bidirectional gap 43 
junction coupling.  44 

While these electrically coupled inhibitory networks are likely important for fast cortical 45 
oscillations, the general connectivity of these networks is unknown. Cortical oscillations 46 
necessitate a threshold level of synchrony; in randomly connected Hodgkin-Huxley models 47 
almost 50 synapses per neurons are necessary ([1]-[3]), while in our model this number is 48 
greatly reduced, presumably due to gap junction coupling. However, cortical networks are 49 
likely not randomly connected, and networks that exhibit dense local clustering and sparse 50 
long-range connections are more plausible. Thus, our goal in the current analysis was to 51 
determine how the topology of an electrically coupled inhibitory network in neocortex 52 
receiving input from cortical layer IV could contribute to synchronization of spiking in layer 53 
VI.  54 

 55 
2 Hodgkin-Huxley model  56 

All simulations were done in BRIAN, a python neural network simulator. We simulated 57 
2400 excitatory and 800 inhibitory neurons with membrane potential described by the 58 
differential equation: !"

!"
= !!

!!
+ !∗!!

!"#
, where 𝑥! is a keyword in BRIAN for Gaussian noise 59 

experiencing a standard deviation 𝜎 = 0.4 and τ = 15 seconds in our simulation. 𝐼! = 𝐼! +60 
𝐼!" + 𝐼! + 𝐼!"#$ + 𝐼!"# , where 𝐼!"# = 𝑤 ∗   (𝑣!"# − 𝑣!"#$) in inhibitory neurons, and =0 61 
otherwise. We also modeled the opening and closing of ionic channels and their respective 62 
differential equations (see supplementary materials). 63 

 64 

Figure 1: Cortical model 65 

 66 
3 Cortical  model  67 

Our model is intended to simulate connectivity between three cortical layers: layer IV, layer 68 
VI, and an inhibitory interneuronal layer that connects the two. Layer IV and layer VI 69 
consisted of 1200 neurons each, whereas the inhibitory layer consisted of 800 neurons. Layer 70 
IV excitatory neurons received 2 µA of excitatory input to model thalamocortical neuronal 71 
input. Layer IV was connected to the inhibitory network with 40% sparseness. These 72 
inhibitory neurons were then connected to the layer VI with a 10% sparseness. Our 73 
conceptual model is outlined in Figure 1. 74 

 75 



4 Inhibitory connectivity 76 

Three topologies were investigated among the 800 neuron 77 
inhibitory network. First, we investigated a regular lattice 78 
network of local neighbor-to-neighbor connections (Fig 79 
2A).  In this network, each of the 800 neurons was 80 
connected to nine neighboring neurons.  Second, we 81 
constructed a network of random connections (Fig 2B) 82 
with a sparseness of 2%. Lastly, a small-world network 83 
was created following the Newman-Watts methodology 84 
([6]), (Fig 2C). This network was derived from the 85 
network of regularly connected neighbors, and additional 86 
nonlocal connections were added with a specified 87 
probability of 0.5 for each neuron. The three networks 88 
were constrained to have a total number of connections 89 
varying by no more than 6%. All networks were defined 90 
with symmetric connection matrices to reflect the 91 
bidirectionality of electrical synapses. It was found that 92 
the weight of inhibitory connections had an effect on the 93 
coefficient of variation, the ratio of the standard deviation 94 
over the mean of spike timing for a particular neuron, for 95 
layer VI neurons. Example neighbor-to-neighbor, random, 96 
and small world networks (respectively) are shown to the 97 
right in Figure 2, and network characteristics are in the 98 
supplementary information. 99 

 100 
5 Results  101 

Figures 3, 4, and 5 show BRIAN plots of our cortical 102 
model with inhibitory networks of ‘regular’, ‘random’, and 103 
‘small world’ topologies respectively. For each figure, the 104 
top three subplots are raster plots showing the temporal 105 
location of individual action potentials for every neuron in 106 
the designated layer. A single point on the graph 107 
represents an action potential, with the y-axis designating 108 
the individual neuron (labeled 1-1200, or 1-800 for the 109 
inhibitory layer), and the x-axis designating the time at 110 
which the action potential occurs. The bottom subplots of 111 
each figure show voltage traces of a single, representative 112 
neuron from each layer. 113 

For each topology, spontaneous and random firing can be 114 
seen in Layer VI in the absence of inhibitory connections 115 
(Figures 3A, 4A, 5A). As mentioned in the description of 116 
our model, this spontaneous firing was achieved using a 117 
Gaussian noise current. In these figures, one can also 118 
observe a perceptibly denser firing pattern in layer IV that, 119 
in addition to the same Gaussian noise current, also 120 
includes an external simulation of 2 µA to simulate 121 
thalamic input. As expected, action potentials are tightly 122 
temporally coordinated in the inhibitory layers, a result of the fast, bidirectional electrical 123 
coupling via gap junctions. 124 

When the inhibitory layer is connected to Layer VI, tight, oscillatory synchronization is 125 
clearly observed in temporal coordination with the firing pattern of the inhibitory layers 126 
(Figures 3B, 4B, 5B). Visually, the extent of Layer VI synchronization is not perceptibly 127 
different between the tested inhibitory network topologies. However, when quantitatively 128 
investigated we found differences between the degree of synchronization across the 129 
inhibitory network topological types. 130 

Outgoing connections
[16,17]
(17,20]

Small World Inhibitory Network

Outgoing connections
[5,15]
(15,19]
(19,30]

Regular Inhibitory Network

Outgoing Degree

 

O
ut

go
in

g 
co

nn
ec

tio
ns

[5
,1
5]

(1
5,
19
]

(1
9,
30
]

R
an

d
o

m
 In

h
ib

it
o

ry
 N

et
w

o
rk

 

A 

B 

C 

Figure 2: Inhibitory network topology 



Figure 3: Regular topology, with and without inhibitory connections to Layer VI 131 

Regular network without inhibitory connections 

Regular network with inhibitory connections 



Figure 4: Random topology, with and without inhibitory connections to Layer VI 132 

Random network without inhibitory connections 

Random network with inhibitory connections 



Figure 5: Small world topology, with and without inhibitory connections to Layer VI 133 

Small World network without inhibitory connections 

Small World network with inhibitory connections 



The synchrony of firing in the inhibited layer VI excited neurons was evaluated using cross-134 
correlation tools in BRIAN. Correlograms, shown in Figure 6, were computed by comparing 135 
a single test neuron to all other neurons in the layer. The spikes were compared in 1 ms bins 136 
and compared within 100 ms before and after the initial spike. Figure X shows the same test 137 
neuron from layer VI and it’s cross-correlation with all other layer VI excitatory neurons, 138 
plotted separately for inhibition by regularly, randomly, and small-world connected 139 
inhibitory networks. While all inhibitory network topologies effectively synchronize layer 140 
VI, and clearly show the highest correlation value for zero time shift, the values of the 141 
correlation differ, the highest values of correlation are displayed by the small-world network 142 
(note the color scales in Figure 6). 143 

Figure 6: Layer VI correlograms for regular, random, and small world inhibitory networks 144 

 Since the small world network exhibited the greatest degree of synchrony, we then 145 
investigated how the degree of gap junction coupling affected synchrony using the 146 
coefficient of variation (standard deviation/mean), a measure of spike-noise at the level of 147 
the individual neuron. We simulated the network 5 times for each value of gap junction 148 
conductance investigated between 0-0.85 millisiemens.  These values are shown in Figure 7.  149 
There is a general trend toward a higher coefficient of variation for higher values of gap 150 
junction conductance. 151 

 152 
6 Discussion and future direct ions 153 

These results demonstrate how the synchronous firing of large populations of neurons can be 154 
driven by an inhibitory interneuronal network coupled via gap junctions.  In particular, we 155 
have demonstrated how the network topologies of an electrically connected inhibitory layer 156 
impacts the degree of synchronization in the inhibited layer, and demonstrated the value of 157 
the low path length and high clustering of the small world network. 158 

We would like to further investigate complex topologies and their effects on 159 
synchronization, such as scale free network models. Importantly, we would like to achieve 160 
biophysical specificity in neuronal subtypes across the layers, which were not implemented 161 
in this model. We could then investigate how different inhibitory cell types, such as the 162 
well-known fast spiking and low threshold spiking interneuron types, may interact with 163 
coupling topologies. Furthermore, we are working on an expanded cortical model including 164 
the inter-layer processing that occurs in layer II/III before thalamic input reaches layer VI.  165 
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 166 

Figure 7: Average layer VI spike variation depends on strength of gap junction coupling 167 
 168 
7 Supplementary Materials  169 
 170 
Gating equations: 171 
 172 

Opening: 173 
∝!= 0.7 ∗ 𝑒!!.! 

∝!= 0.1 ∗
25 − 𝑣!

𝑒!.!!!.!∗!!   − 1 

∝!= 0.01 ∗
10 − 𝑣!

𝑒!!!.!∗!! − 1 

Closing: 174 

𝛽! =
1

1 + 𝑒!!!.!∗!!  

𝛽! = 4 ∗ 𝑒!!.!""#∗!!  
𝛽! = 0.125 ∗ 𝑒!!.!"#$∗!!  

Dynamics: 175 
𝑑ℎ
𝑑𝑡 =∝!∗ 1 − ℎ − 𝛽! ∗ ℎ   

𝑑𝑚
𝑑𝑡 =∝!∗ 1 −𝑚 −   𝛽! ∗𝑚 

 176 
𝑑𝑛
𝑑𝑡 =∝!∗ 1 − 𝑛 −   𝛽! ∗ 𝑛 

 177 



 178 

Figure 8: The average length of any two neurons in the simulated networks 179 

 180 
 181 

Figure 9: The probability that if neuron X is connected to Y and Y is connected to Z such that X is 182 
also connected to Z 183 
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184 
Figure 10: Small World Network with (nearly) 0 mS gap junction conductance 185 
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 198 

Figure 11: Small World Network with 0.025 mS gap junction conductance 199 
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 217 

Figure 12: Small world network with 0.8 mS conductance 218 
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