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Abstract

It has been posited that biological neural networks, such as a brain, may naturally
exist in critical states. We propose two mechanisms for signal transduction in two
such networks as encoding strategies which are optimized by criticality. First, we
examine compressive sensing in a 2-dimensional Ising model at or near its critical
temperature. Secondly, we examine the dynamical synchronization capabilities of
a random neural network model as it transitions into chaotic behavior. We propose
that both techniques should be most successful at the critical state of either model.

1 Introduction

Criticality has enjoyed widespread success in the scientific community, being applied to problems
as diverse as gene expression, starling flocks, and forest fires.[1] Originating in statistical physics,
criticality is a set of properties of a system near a second order phase transition, in which the system
possesses long range correlations in both space and time. These properties make it an attractive tool
for describing the many complex systems that seem to display similar long range order. However,
their analytical intractability restricts most arguments for criticality’s existence to a rather superficial
resemblence, usually resting on the existence of a power law in some measurement of the system.
The recent realization that power laws occur far more often, and for a broader range of mecha-
nisms than originally thought has tempered some of the enthusiasm for scale-free networks and,
by association, criticality.[2] However, as the most established and flexible phenomenon displaying
long range order, criticality still occupies a strong position as a candidate theory for understanding
complex systems.

In the review ”Emergent complex neural dynamics[1]” Dante Chialvo makes a case for the brain
exhibiting criticality. He pulls from several pieces of evidence including:

• The brain contains the necessary elements (a large network of nonlinear interacting ele-
ments) to display complex emergent behavior and thus criticality.

• EEG/MEG readings of healthy brains do not show a preferred time scale.
• All models that display emergent complex behavior also display criticality.
• Neuronal avalanches have a scale free size distribution matching a critical branching pro-

cess.
• Degree distributions created from fMRI recordings are scale-free.

Taken as a whole these form a reasonably strong case for criticality playing some role in the brain’s
dynamics however they all suffer from the defect mentioned previously: Power laws are nonspecific
to criticality. As such, we take up the same investigation from the opposite direction asking ’Why
would a brain want to be critical?’ To this end, we examine systems that possess a known critical
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phase transition and which are relevant to neuroscience: the ising model and a simple neural network
with a leak current and sigmoidal connection strengths.

In the Ising model, we examine the structure of clustering that occurs in the vicinity of a phase
transition. In particular, is it possible to reconstruct the states of distant spins held fixed as the system
is evolved, given the state of the system at all points between them? We examine this possibility at
various temperatures and examine the independence of multiple measurements.

In the dynamical random network, we examined the ability of the model to synchronize to a set of
data produced by the model. Since we expect correlation times in the system to diverge near criti-
cality, we hypothesize that synchronization will be maximally effective in this regime. In principle,
the same should be true for a set of external inputs.

2 The Ising Model

The ising model could be considered the canonical physical system exhibiting critical phase transi-
tion. The spins may be considered small arrows that may point up or down with a corresponding
value of +1 and -1. They are governed by the Hamiltonian,

H = − ε
2

∑
i 6=j

sisj

where ε is some energy scale and the factor of 1
2 compensates for double counting in the sum. There

is an energetic cost for two neighboring spins to oppose each other. As such, the system displays
two phases: As the temperature is raised, the system moves from an ordered phase in which all
of the spins point in the same direction and thus minimize the energy, to a disordered phase in
which neighboring spins oppose each other. Between the two phases the system displays power
law correlation distributions in space and time and a large number of accessible states. These three
regimes are displayed in Figure 1.

Figure 1: The ising model below, near, and above the critical temperature

2.1 Compressive Sensing

Compressive sensing is a process by which a k-sparse signal of length N may be perfectly recon-
structed from onlyO(K logN/K) measurements if those measurements are random projections.[3]
This is interesting both because O(K logN/K) is much better than O(N) which is implied by the
Shannon-Nyquist theorem, and that this is done using random projections. This is because random
projections are information preserving in that they approximately preserve distances between major
features in the data. Stating this more mathematically, given a discrete signal x with a sparse repre-
sentation in some basis Ψ, we acquire x by projecting it onto a set of vectors Φ, acquiring a vector
of projections y:

y = Φx = ΦΨs = Θs

We can perfectly reconstruct our original signal s from only a few measurements y so long as
Θ = ΦΨ obeys the Restricted Isometry Property which happens to be fulfilled by most random
bases. (Interested readers may consult[3][4]) The sparsity of most natural signals and the use of
random projections has led Chuck Stevens to suggest that this coding strategy may be used in a
modified form in several regions of the cortex that have resisted attempts at making a ’map’ of their
function. We propose that a system at criticality may naturally perform these projections and choose
an Ising model to attempt to demonstrate it.
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2.2 Constructin Measurement Matrices

Ising models were simulated by means of markov chain monte carlo. [5][6] Comparison between
Metropolis and Gibbs sampling algorithms yielded that the Metropolis algorithm performed poorly
at high temperatures and Gibbs sampling was performed thereafter. A signal vector ~s was generate
with [-1, 1] entries. These entries were inputed into the model at random points, held fixed as the
system evolved. A single random spin r was also selected to be recorded. We would regard this
single spin as our random projection of the signal held fixed in the model. After evolving the system
to equilibrium, a breadth first search was performed through the cluster in the model containing the
recording spin. A cluster incidence vector~i was formed whose elements were 1 if the corresponding
signal element was a member of the cluster and zero otherwise. The signal vector was then l1

normalized so that the equation, r =~i · ~s was satisfied. By repeating this procedure with the signal
spins held fixed and the same recording spin, we were able to generate a system ~r = I~s that should
be approximately solved by our signal vector and recorded spins.

A full study of the properties of these measurement vectors (and alternative schemes at constructing
a measurement matrix) is still underway. Under the limitation of time, two analyses were under-
taken. First, the rank of I was calculated through SVD and examined as a function of number of
measurements and temperature. Second, the system was solved by means of the Moore-Penrose
pseudoinverse and the root square reconstruction error calculated, also as a function of number of
measurements and temperature. All results here are for a (32× 32) spin model to keep computation
time reasonable, although similar analyses have been run on larger systems.

2.3 Results

Ranks at various temperatures are displayed in Figure 2. At the critical temperature, each mea-
surement remains independent and the measurement matrix attains full row rank in as few steps as
possible. Only slightly worse is the low temperature limit. Here several measurement vectors are
linearly dependent on those previously measured and do not increase the rank. Finally, worst off is
the high temperature limit in which the matrix was not able to reach full rank given twice as many
measurements as necessary.

Figure 2: Measurement matrix ranks at various temperatures

Attempting to reconstruct the original signal from these measurement however, has been far less
successful. Using the Moore-Penrose pseudoinverse to attempt reconstruction at every step, we
attempted to calculate reconstruction error for each measurement (Figure 3).

2.4 Discussion

Results thus far have been disappointing. We begin with the high point. The rank of the measurement
matrix (Figure 2) seems to show a distinct temperature dependence. This would seem to indicate
that the critical state offers some advantage over its neighboring phases in its ability to transmit
information located around the model. In the disordered phase, the small correlation length makes it
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Figure 3: Reconstruction error at various temperatures

very difficult to obtain interactions with distant spins, and in the ordered phase the large interaction
size causes repetitive couplings to all the spins also transmitting redundant information.

We have far less understanding of our errors. It seems that the critical temperature is the most
numerically unstable of all and especially so just as the matrix reaches full rank. As this is the case
for the low temperature matrix as well, this may be a feature of the MP pseudoinverse. While an l1
minimization would have been more enkeeping with the original inspiration for this project due to its
preferred role in compressive sensing, it is substantially more difficult to implement and refinements
of the reconstruction will be relegated to subsequent work. As it stands, I believe the poor quality
of the reconstructions is feature of the specific encoding and reconstruction scheme used and that
further work may yield more accurate results.

3 Random neural network model

We considered a neural network model, originally presented by [7], which is a dynamical system
describing a network of N randomly connected resitive and capacitive elements. The equations of
motion describing the system are

dVi
dt

= −Vi +

N∑
j=1

Jijφ(Vj) + Ii(t) (1)

where φ(Vi) is an I/V relationship which may be thought of as an “activity” proportional to the
synaptic current between neurons i and j. One possible choice is a sigmoid function of V , i.e.
φi = tanh (αVi). This choice is both biologically motivated as acting to saturate synaptic activity
as a function of membrane voltage, as well as mathematically to avoid highly unstable, runaway
solutions to eq. (1). α acts as a control parameter on the turnaround rate of the synaptic activity
around V = 0; in some sense it controls the “degree of nonlinearity” in the system.

The Ii are external inputs into the system. These may be thought of as sensory inputs in a network
model that more approximately represents the structure of a sensory neural network. They may be
included here, anyway, to experiment with estimation of the external inputs using synchronization.

The matrix Jij describes the connectivity in the network; in this particular model, Jij is chosen to
be a Gaussian random matrix with elements distributed according to the statistics

〈Jij〉 = 0, 〈JijJkl〉 =
J̃2

N
δikδjl (2)

with zero on the diagonals to eliminate self-coupling terms. This means synaptic connections are
totally decorrelated and, in general, asymmetric. This also means that, on average, half of the con-
nections are inherently inhibitory and half are excitatory. If Jij were symmetric, (1) would describe
a system that relaxes to a global minimum of an energy function; with asymmetric couplings the dy-
namics are that of a spin glass, which in general have nonrelaxational and possibly chaotic behavior.
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A detailed mathematical treatment of this model in the limit of large N is given in [7]. The result is
that under the replacement α→ J̃ in the expression for φ, the model undergoes a “phase transition”
when the control parameter J̃ reaches a critical value of 1. This is manifest in the structure of the
attracting solution manifold in the {Vi} state space, which acquires at least one positive Lyapunov
exponent; in other words a family of chaotic solutions to (1) appears.

4 Dynamical synchronization technique

Dynamical synchronization is a widely-used technique for performing state estimation in systems
which can be adequately described by dynamical systems [8]. In this technique, the model equations
are coupled to a set of data through a linear term as

dxi
dt

= fi(x) +
∑
j

gij (yj − xj) (3)

where x(t) and y(t) are the model and the data trajectories, respectively, and gij is a set of positive
coupling constants. In practice, only a subset of the couplings will be nonzero (corresponding to
the components of the system which can be measured) and the matrix gij is diagonal, since in this
scheme there is no obvious advantage to coupling different components of the system to each other1.
The linear term acts like a driving force on x, dragging the coupled components of the dynamics
towards the observed values y.

It may be possible for all the components of a model to synchronize to a data set if enough mea-
surements are made, and if the coupling strenghts are large enough. What constitutes “enough”
comes on a case-by-case basis. Roughly, what is required is for the linear terms to regularize the
solution manifold by driving the value of the largest Lyapunov exponent in the coupled system to a
non-positive value.

The typical procedure in this kind of analysis is to produce a set of (possibly noisy) dummy data
using the model, and couple this back into the model itself. The coupled “observer” model is then
integrated forward in time, as usual. This allows one to evaluate whether or not the model can
synchronize to a data set which is representative of the dynamics in a controlled setting. One requires
a metric of success to make the call, which might be something as simple as

M =
1

T

∫ T

0

dt
(
x(obs)
i (t)− x(data)

i (t)
)2

(4)

in which case a smaller M means a more successful attempt at synchronization. This kind of proce-
dure is sometimes referred to as a twin experiment.

4.1 Numerical analysis

We examined the model for N = 256 neurons with a single instantiation of Jij , with all Ii = 0,
for now at least. Ideally, we would like to scale up the simulation size to a larger N ∼ 1000, and
to gather statistics about an ensemble of models parameterized by different instantiations of Jij .
However, limited by time, we now present said results as at least a preliminary examination of the
model.

First, we performed a comparison of numerical results to the analytic results of [7]. For a single
randomly drawn instantiation of Jij , (1) was integrated forward in time using the LSODA solver in
scipy.integrate. The initial conditions were drawn randomly from a ball of radius 1 centered
about the origin Vi = 0. To examine the behavior of ∆(t) alongside the phase space trajectories, it
was assumed that the steady state of the system was ergodic so as to allow the replacement

〈Vi(t0)Vi(t+ t0)〉 →
∫ T−t

t0

dt′ Vi(t
′)Vi(t+ t′)

1In a further examination of the model, we hope to test a coupling scheme which couples components
to each other in time-delayed coordinates. Because the components are coupled through the dynamics, the
time-delayed trajectories can provide information about each other and enhance the scheme by coupling un-
measurable components to the data.
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(up to an overall scale factor) where T − t0 is the length of the recorded time series. In other words,
the ensemble average was replaced with a time average. This was necessary because only a single
instantiation of Jij was used, and the LHS is an ensemble average over the distribution of Jij . In
the analysis, the average value

∆̄(t) ≡ 1

N

N∑
i

∆i(t) (5)

was computed to assess the overall behavior of the system, which for large N should be representa-
tive of the behavior of most of the components of the network.

The critical value of J̃ was reckoned to be the value where ∆̄ “smoothed out” over t. Below this
value, the correlation oscillates with the frequency of the system when it is executing a limit cycle
trajectory; well above this value the surface becomes very rough, and peaks sharply at t = 0. This
is where the solution is chaotic, so time correlations along the trajectory decay quickly.

Finding the critical value of J̃ provided us with a place to examine the effect of criticality on syn-
chronization. The observer system looks like

dVi
dt

= −Vi +

N∑
j=1

Jij tanh(J̃Vj) + gi(V
(D)
i − Vi) (6)

where M elements of gi are nonzero, corresponding to the M measured components of the system
(corresponding to the M data time series V (D)

i ). This was, again, integrated forward step-by-step
over the data points, and compared to the data trajectory.

4.2 Results

∆̄(t) was calculated for various values of J̃ , near to and far from the point where the system becomes
chaotic. The transition appeared to occur at about J̃ = 1.252. Notice this is not J̃ = 1; however,
it can be argued that for finite N , the solution does not immediately become chaotic but undergoes
a period doubling cascade whose width (over J̃) shrinks as N grows (see [7]). In this regard, our
numerical result thus shows some agreement with the analytical calculation.

See figs. 4-11 for various comparisons of the phase space trajectory (projection onto two compo-
nents) to ∆̄(t). At J = 1.2, there is a limit cycle solution; once J = 1.23, a period-doubling has
occurred which is also apparent in ∆̄.

The behavior at J = 1.252 has already become quite complex. Notice the structure of the attractor
in phase space, as well as that of ∆̄ which has flattened quite a bit by this point. Many individual
components of the system, in fact, have become completely flat (not shown). Beyond this, at J =
1.3, ∆̄ is showing “in-between” behavior where it is oscillating, but also quickly decaying as the
model is approaching chaotic behavior. At J = 1.4, the model seems to have clearly become
chaotic.

It seems like J = 1.252 is a good place around which to test our hypothesis. Unfortunately, due to
time constraints, we got as far as coding the coupled model and calculating some sample trajectories,
but no conclusive results have been obtained yet. See fig. 12 for a sample of the outcome at J̃ =
1.252 and with N = 200 components of the system coupled to the data.

4.3 Discussion

The behavior of ∆̄ is encouraging for the future progress of this project. It is important that the
correlations in many components of the system seem to flatten completely near the critical value of
J̃ . This kind of behavior is exactly what is expected out of criticality, where correlation lengths in
the system (in both the time and space domains) are expected to diverge. Ideally, this will produce
the effect of maximizing the ability of the system to synchronize near the critical point.

The resulting ∆̄ at other values of J̃ confirm expecations, as well. On limit cycles, time correlations
should be periodic since the system is periodic over the period of the cycle. Additionally, we expect
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Figure 4: J = 1.23, phase space trajectory
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Figure 5: J = 1.23, time correlation
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Figure 6: J = 1.252, phase space trajectory
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Figure 7: J = 1.252, time correlation
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Figure 8: J = 1.3, phase space trajectory
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Figure 9: J = 1.3, time correlation
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Figure 10: J = 1.4, phase space trajectory
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Figure 11: J = 1.4, time correlation
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chaotic behavior to quickly degrade correlations and produce very rough, jagged behavior otherwise
(which is essentially due to the fractal dimension of the attractor).

Our future direction with this model is to examine its synchronization capabilities both near and
far from the critical point, using the aforementioned procedure or, in the future, using time-delayed
coordinate information to couple unmeasured components of the model to the data.
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