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Abstract

In this paper, we aim to develop alternative methods to backpropagation that more
closely resemble biological computation. While backpropagation has been an
extremely valuable tool in machine learning applications, there is no evidence that
neurons can back propagate errors. We propose two methods intended to model
the intrinsic selectivity of biological neurons to certain features. Both methods use
selectivity matrices to calculate error and to update synaptic weights in different
ways, either by comparing neuronal firing rate to a threshold - firing rate algorithm
- or computing error from a generated score - scoring algorithm. We trained and
tested networks that used either of the two algorithms with the MNIST database.
We compared their performance with a multilayer perceptron network with 3 hidden
layers that updated synaptic weights through typical error backpropagation. The
backpropagation algorithm had a test error of 1.7%. Networks that updated synaptic
weights based on the scoring method gave a test error of 2.0%, and networks using
the firing rate method 4.3%. We were thus able to develop more biologically
plausible models of neural networks in the brain while obtaining performance
comparable to typical backpropagation algorithms.

1 Introduction

Error backpropagation used in conjunction with gradient descent is a common method to train
artificial neural networks. The method consists of two steps. First, during forward propagation, the
input is passed forward through the hidden layers of a multilayer neural network in order to finally
obtain a predicted output. Specifically, the output of each layer is weighted and an activation function
(such as the rectified linear unit activation function) applied, which is then passed as input into the
next layer. The output of the last layer is the predicted label. In order to increase the accuracy of
the neural network - that is, to increase the probability that the predicted output is what we would
expect for a given training input - we backpropagate errors and update the weights between layers. In
particular, error backpropagation involves:
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Figure 1: Flow of calculations involved in forward propagation and error backpropagation in a neural
network with 2 hidden layers. The input, x, is a 28x28 pixel hand drawn digit. It is weighted by
W and passed into Hidden Layer 1. h; is calculated by applying the rectified linear unit (ReLU)
activation function on the weighted input into Hidden Layer 1. The output of Hidden Layer 2 h, and
of the Output Layer z are similarly calculated. A loss E(z) is calculated at the Output Layer and
is used to calculate error terms e,, e;, and e; that are used to update the weights between layers, in
proportion to the learning rate 7.

1. Using the predicted label y at the last layer of the network and expected training label ¢ to
calculate an error F or loss. Typically, the mean squared error equation is used:

E=_x(y—9)°

2. Calculating the gradient of this loss E(z) with respect to the output z of the neural network
and propagating the resultant error term e, backwards to calculate similar error terms for the
previous layers. For a neural network with 4 total layers (2 hidden, 1 input, and 1 output)
and 4 weights T (Figure/I)):
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3. Updating each weight W of the neural network by AW by taking steps proportional to the
negative of the gradient to minimize error E. The step size 7 is the learning rate. For a
neural network with 4 layers (Figure [T)):
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4. Repeating the above steps over several passes to update weights to minimize error and
maximize prediction accuracy of the neural net (1} 15)).

There is no biological evidence that neurons compute error to improve performance in the way
described above. In particular, error backpropagation involves a weight symmetry with forward
propagation. During forward propagation, the output of one layer is weighted by a weight matrix
W and passed as input into the next layer. During backpropagation, the error is passed backwards
and weighted by the transpose of the weight matrix W7, as can be see in Step 2 above. This exact
symmetry between forward propagating signal and backwards propagating error is unlikely to be
found in nature; there is no evidence in the brain that the connection strength from Neuron X to
Neuron Y is the same as the connection strength from Neuron Y to Neuron X.

There is evidence in the literature that individual neurons are selective to a number of categories in a
task dependent manner. Research in the IT area of monkeys has demonstrated that when presented



with a categorization task, neurons can be predisposed to various categories involved in performing
the task. That is, certain neurons have greater activity for categories deemed important for the given
task, such as the eyes of a face if the task involves some decision about the eyes (25 3; 4)).

We seek to use this property of neuron selectivity to develop alternatives to the standard technique of
backpropagation. For each neuron in the neural network, we model its selectivity to each possible
category (output label) as either +1 if the neuron is selective, -1 if it is anti-selective, or 0 if it is
agnostic. Each layer in a multi-layer network will generate its own unique error signal based on the
feature selectivity of neurons in that layer without propagating e, backwards from the output layer to
the input layer. The use of self-generating error signals with unique selectivity masks could provide a
more biologically realistic alternative to the commonly used back propagation structure.

2 Methods

Each neuron in a layer of the network has a selectivity profile, a randomly generated vector of +1, 0,
or -1 for each possible output category. We developed two algorithms - firing rate and scoring - that
both use this selectivity profile to generate error signals but do so in slightly different ways. Note that
forward propagation and the weight update is the same for backpropagation, firing rate, and scoring;
the difference between the three methods is in how the error used to update the weights is calculated.

Neural networks implementing backpropagation, firing rate, or scoring to update weights were written
in Python. The code is provided as Supplementary Information.

2.1 Firing Rate Algorithm
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In the firing rate method, a global "firing rate parameter” is defined as threshold for neural activity.
For a given layer, when a selective neuron in that layer fires below this threshold, the weight applied
to the input into that neuron (during forward propagation) is updated to push the selective neuron’s
activity past the threshold. If a selective neuron fires above the set threshold, the weight is not updated
as the neuron is already performing adequately. For anti-selective neurons, the weights are updated
so that the activities of the neurons are pushed to zero. For agnostic neurons, no updates occur as
these neurons are indifferent to the current input. This flow of decisions for each neuron is depicted
in Figure[2]

2.2 Scoring Algorithm

In the scoring method, the activity of each hidden layer is multiplied with the randomly generated
selectivity matrix for all the 500 neurons in that layer, M. Thus, the score is defined as M x* y. This
generates a score vector for that layer. Note that for the scoring method, there is no output layer; each
hidden layer is capable of producing an output, a predicted label. The predicted label for each layer
is then compared to the expected label and a cross entropy error is generated. This error is used to
only update the weights of the inputs into that layer, as shown in Figure [3] in order to ultimately
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minimize the error at each layer similar to what is done during Step 3 in the description of error
backpropagation.

2.3 Evaluation of Algorithms

We used the MNIST database to train and test our algorithms. The MNIST database contains a series
of 28-by-28 pixel images of handwritten digits between 0 and 9 (10 output categories). We used the
60,000 training examples exclusively for training, and tested on the 10,000 test examples (6)).

Using the MNIST results as a benchmark, we evaluated the 3 different approaches to generating
errors. We used neural nets with 3 hidden layers, each with 500 neurons. We used gradient descent,
with mini-batches of 50 examples (5)). We evaluated the training and test errors, calculated by adding
the number of correct predictions (of occurrences where the predicted and expected labels were the
same) and dividing by the total number of examples used to train or test.

Each neural net was optimized for 50 epochs where one epoch is equal to a full run through of our
training set (that is 60, 000/50 mini-batches). After each epoch, the learning rate was halved to avoid
stepping past the local minimum in the gradient of the error function.

3 Results

The results of standard backpropagation and the firing rate method are shown in Figure[d] After
10 epochs the training error for standard backpropagation is approximately 0% and the test error
saturates at 1.7%. For a defined firing rate parameter of 0.8, the training error saturates at 3.5% and
test error at 4.3% after roughly 50 epochs.

For the scoring algorithm, the results are shown in Figure [5] Here, each layer itself generates an
output based on its scoring mask. The first layer saturates first after about 14 epochs with a training
error of 0% and a test error of 2.0%. The second layer saturates to the training and test errors of the
first layer after 17 epochs. Finally, the third layer saturates after 26 epochs to a training error of 0.0%
and a test error of 2.0%.

4 Discussion

We note the effectiveness of the backpropagation algorithm. The training and test errors both fall to
their steady-state values quickly, after roughly 10 epochs; the last 40 epochs do not change the errors
significantly (Figure[d). We also note that the firing rate algorithm does not perform as effectively as
backpropagation. In fact even after 50 epochs, it appears that the error curves have not yet reached
their steady state value. The test error value that the firing rate algorithm gives after 50 epochs is
4.3%, 2.6% greater than the 1.7% test error for backpropagation. While the firing rate algorithm does
perform well, it does not perform as well as backpropagation.
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Figure 4: Training (blue) and test (orange) errors for back propagation and training (purple) and test
(yellow) errors for the firing rate method, both for 50 epochs. The two methods are used in a neural
network consisting of 3 hidden layers each with 500 neurons. The training error for backpropagation
is approximately 0% after 10 epochs, at which point the test error saturates as well, to a value of
1.7%. For the firing rate method, we set a target threshold of 0.8. Weights and selectivity masks were
initialized randomly. After 50 epochs, the training error saturates to a value of 3.5% and the test error
to a value of 4.3%.

9.0
—=Training Hidden Layer 3

8.0 ~~Training Hidden Layer 2
—~Training Hidden Layer 1
—Test Hidden Layer 3

6.0 Test Hidden Layer 2
—~Test Hidden Layer 1

Percent Error

0 2 4 6 & 10 12 14 16 I8 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

Number of Passes (Epoch)

Figure 5: Training (blue, gray, light blue) and test errors (red, yellow, green) for the 3 hidden layers
of the network shown in Figure 3Jover 50 epochs. The training and test errors associated with the
output of the first layer converges after 10 epochs, with the errors associated with the other two layers
following. Final training error is 0.0% with a test error of 2.0%.

On the other hand, the scoring method alternative produces a test error of 2.0% (at the top layer), just
0.3% greater than the test error for backpropagation (Figure[5). It performs better than the firing rate



algorithm and produces results comparable to backpropagation. The scoring method algorithm is
thus a biological alternative to backpropagation that performs approximately as well.

We note that the first hidden layer for the neural network that uses the scoring method saturates to
its steady-state error value first, after roughly 10 epochs for both training and test error curves. The
second hidden layer saturates at roughly 12 epochs and the third hidden layer at roughly 26 epochs
(Figure[5). The error for the top layer, Hidden Layer 3, cannot converge until the two layers beneath
it stabilize, since the top layer is dependent on the bottom two layers for its input. In other words,
only once the errors associated with Hidden Layer 1 and Hidden Layer 2 converge can the errors for
Hidden Layer 3 converge. The same applies for Hidden Layer 2, which is dependent on the output of
Hidden Layer 1 for its input. Essentially, Hidden Layer 2 has to "wait" for the output of Hidden Layer
1 to be optimized such that the error associated with Hidden Layer 1 is minimized. This optimized
output is passed into Hidden Layer 2 as input (Figure[5). It is for this reason that the error curves for
Hidden Layer 1 saturate first, then those for Hidden Layer 2, and lastly those for Hidden Layer 3.
Because the scoring method provides the opportunity to examine the predicted label at each level of
the network, it would be an interesting avenue for further research to see how performance varies by
adjusting the number of layers.

During the first 20 epochs, the error curves for the scoring algorithm are not as smooth as the curves for
backpropagation. That is, the descent of the former curves is uneven. This is indicative of a learning
rate that has not been optimized for the scoring algorithm. For the scoring and backpropagation
methods, we reduced the learning rate by half after each epoch. While this seems to have worked
well for backpropagation (the backpropagation error curves are much smoother), halving the learning
rate is not ideal for the scoring method. In fact, as can be seen from Figure[3] the training and test
error curves for Hidden Layer 3 jump up at 6 and 18 epochs. Optimizing the learning rates may lead
to better accuracies that reduce the 0.3% difference in error between scoring and backpropagation.
Rather than halving the learning rate at the end of each epoch, we can consider using a step decay to
reduce the learning rate.

Another area we intend to explore in the future is to test the robustness of the three error calculation
methods. We can measure how performance suffers (how the training and test error curves look)
in response to randomly removing a certain percentage of neurons (25%, 50%, 75%, etc.) at each
hidden layer in the three networks. Such a study may reveal whether our biological alternatives are
more robust than error backpropagation.

We can also optimize our selectivity masks in addition to the synaptic weights. Given the importance
of the selectivity masks to both the firing rate and scoring methods, randomly generating the selectivity
masks initially and updating them to minimize error (as we update the weights) may improve the
accuracies of the firing rate and scoring algorithms.

Lastly, we intend to see whether we can define a selectivity matrix for backpropagation based on
the weight of the input into each neuron in each layer. We propose that by analyzing the resulting
weights after backpropagation, a selectivity matrix similar to those defined in our other methods can
be generated based on the network’s activity. We may thus be able to compare selectivity matrices
for backpropagation with matrices for firing rate and scoring. It would be interesting to see whether
backpropagation does in fact result in neuron selectivities that are comparable to those of the more
biological firing rate and scoring algorithms. Alternatively, we could employ the standard methods
for evaluating selectivity, which present examples from the different categories and then define a
selectivity metric as a function of the neuron’s responses to the examples from each category.

5 Conclusion

In this project, we implemented two new techniques for error calculation that are alternatives to error
backpropagation using gradient descent: firing rate and socring. We evaluated networks utilizing each
of the three methods for error calculation by training and testing on the standard MNIST dataset.By
analyzing the training and testing error of these networks we show that alternative methods inspired
by biology may be viable alternatives to backpropagation. Most interestingly, the scoring method
came reasonably close to error backpropagation in performance (2.0% versus 1.7%). There are also
opportunities to improve the method further in future work, by annealing the learning rate in different
ways or by dynamically updating the selectivity matrices to minimize error.
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